留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响

朱红兵 付正昊 王烨 陈经毅

朱红兵, 付正昊, 王烨, 等. 界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响[J]. 复合材料学报, 2024, 41(6): 3158-3171. doi: 10.13801/j.cnki.fhclxb.20231101.002
引用本文: 朱红兵, 付正昊, 王烨, 等. 界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响[J]. 复合材料学报, 2024, 41(6): 3158-3171. doi: 10.13801/j.cnki.fhclxb.20231101.002
ZHU Hongbing, FU Zhenghao, WANG Ye, et al. Effect of interfacial agents on the mechanical properties of the interface between full lightweight ceramsite concrete and ordinary concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3158-3171. doi: 10.13801/j.cnki.fhclxb.20231101.002
Citation: ZHU Hongbing, FU Zhenghao, WANG Ye, et al. Effect of interfacial agents on the mechanical properties of the interface between full lightweight ceramsite concrete and ordinary concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3158-3171. doi: 10.13801/j.cnki.fhclxb.20231101.002

界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20231101.002
基金项目: 国家自然科学基金(52178182);湖北省高等学校优秀中青年科技创新团队计划项目(T2022002);武汉科技大学湖北省“十四五”优势特色学科(群)项目(2023D0501)
详细信息
    通讯作者:

    朱红兵,博士,教授,博士生导师,研究方向为轻骨料混凝土 E-mail: zhuhongbing@wust.edu.cn

  • 中图分类号: TB332;TU501

Effect of interfacial agents on the mechanical properties of the interface between full lightweight ceramsite concrete and ordinary concrete

Funds: National Natural Science Foundation of China (52178182); Hubei Provincial Excellent Young and Middle Aged Science and Technology Innovation Team Project of Colleges and Universities (T2022002); "The 14th Five Year Plan" Hubei Provincial Advantaged Characteristic Disciplines (Groups) Project of Wuhan University of Science and Technology (2023D0501)
  • 摘要: 制备了5种粘结界面的全轻陶粒混凝土与普通混凝土粘结试件,通过劈裂抗拉、剪切和弯曲等力学试验及SEM测试,探究界面剂对全轻陶粒混凝土与普通混凝土粘结界面力学性能的影响。力学试验结果表明:涂抹界面剂可有效改善界面区结构,大幅提高界面力学性能;环氧树脂界面剂是改善界面劈裂抗拉强度和抗折强度的最优界面剂,强度值分别可提升56.5%和38.3%;聚合物类胶浆界面剂对界面抗剪强度的提升效果最为明显,可提升71.2%;涂抹水泥净浆界面的力学性能也能满足行业标准要求,硅灰水泥净浆作为界面剂较水泥净浆更优;界面剂对力学指标的影响程度从强到弱依次为劈裂抗拉强度、抗折强度和抗剪强度。建立了以全轻陶粒混凝土力学指标为基础、考虑界面剂影响的新老混凝土界面力学强度计算公式。SEM测试从微观层面较好地解释了力学性能测试结论:涂抹界面剂能减小新老混凝土间的微观裂缝宽度,以环氧树脂界面剂和聚合物类胶浆的效果较明显;涂抹界面剂可有效降低界面过渡区的孔隙率,孔隙率下降幅度为46.44%~60.81%。研究结论对混凝土结构加固界面处理具有参考价值。

     

  • 图  1  全轻陶粒混凝土和普通混凝土骨料的颗粒级配曲线

    Figure  1.  Gradation curves of full lightweight ceramsite concrete and ordinary concrete aggregate

    图  2  全轻陶粒混凝土-普通混凝土复合试样设计

    Figure  2.  Design of full lightweight ceramsite concrete-ordinary concrete composite specimens

    图  3  试验准备及试验流程

    Figure  3.  Process of specimens and test

    图  4  扫描电镜试样

    Figure  4.  Specimen for scanning electron microscopy

    图  5  劈裂拉伸试验中全轻陶粒混凝土-普通混凝土界面破坏形态

    Figure  5.  Failure mode of interface between full lightweight ceramsite concrete and ordinary concrete in splitting tensile test

    图  6  界面剂对全轻陶粒混凝土-普通混凝土界面力学性能的影响

    Figure  6.  Effect of interfacial agents on the mechanical properties of the interface between full lightweight ceramsite concrete and ordinary concrete

    图  7  新老混凝土试样与复合试样的力学性能对比

    Figure  7.  Comparison of mechanical properties of new and old concrete specimens with composite specimens

    图  8  全轻陶粒混凝土-普通混凝土界面的微观结构

    Figure  8.  Microstructure of interface between full lightweight ceramsite concrete and ordinary concrete

    图  9  全轻陶粒混凝土-普通混凝土界面过渡区的微观结构

    Figure  9.  Microstructure of interface transition zone between full lightweight ceramsite concrete and ordinary concrete

    图  10  界面剂对全轻陶粒混凝土-普通混凝土界面过渡区孔隙率的影响

    Figure  10.  Effect of interfacial agent on porosity of interfacial transition zone between full lightweight ceramsite concrete and ordinary concrete

    表  1  混凝土配合比 (kg/m3)

    Table  1.   Proportion of concrete (kg/m3)

    Concrete type Crushed stone Ceramsite River sand Ceramsite sand Cement Water Water reducing agent
    Ordinary concrete 1251 512 461 175
    Full lightweight ceramsite concrete 620 600 550 154 5.1
    下载: 导出CSV

    表  2  混凝土28天基本力学指标 (MPa)

    Table  2.   Basic mechanical parameters of concrete at 28 days (MPa)

    Concrete typeCompressive strengthSplitting tensile strengthShear strengthFlexural strength
    Ordinary concrete34.803.263.674.39
    Full lightweight ceramsite concrete53.663.202.104.83
    下载: 导出CSV

    表  3  硅灰技术指标

    Table  3.   Technical index of silica fume

    Component Content/% Color Grain size/μm Volume weight/(kg·m−3) Specific surface area/(g·m−2)
    Silicon dioxide 96.74 Grey 0.1-0.3 1600-1700 20-28
    下载: 导出CSV

    表  4  聚合物与环氧树脂界面剂技术指标

    Table  4.   Technical index of polymer and epoxy resin

    Type of interface agent State Main chemical Shear bond strength/MPa Tensile bond strength/MPa Solidification time/d
    Polymer Liquid Butadiene and styrene 1.5 1.0 1
    Epoxy resin Liquid Epoxy resin 1.6 0.8 2
    下载: 导出CSV

    表  5  试件分组及实测强度值

    Table  5.   Grouping and measured strength values of specimens

    Specimen Type of sample Size of specimen/
    (mm×mm×mm)
    Type of interfacial agent Measured strength value/MPa Purpose
    Parameter Sample 1 Sample 2 Sample 3 Average
    O-T Monolithic
    concrete
    specimen
    150×150×150 No interfacial agent Splitting tensile strength 3.56 3.42 3.76 3.58 As a control group
    O-S 150×150×150 Shear strength 4.10 3.96 4.06 4.04
    O-F 100×100×400 Flexural strength 4.72 4.90 4.93 4.85
    FO-0-T Composite specimen 150×150×150 No interfacial agent Splitting tensile strength 1.86 1.83 1.82 1.84 They were used to study the effect of interfacial agent on tensile strength of the interface.
    FO-1-T Cement paste 2.68 2.60 2.70 2.66
    FO-2-T Cement slurry containing silica fume 2.70 2.71 2.71 2.70
    FO-3-T Polymer 2.74 2.77 2.76 2.76
    FO-4-T Epoxy resin 2.88 2.90 2.87 2.88
    FO-0-S Composite specimen 150×150×150 No interfacial agent Shear strength 1.17 1.15 1.01 1.11 They were used to study the effect of interfacial agent on shear strength of the interface.
    FO-1-S Cement paste 1.74 1.70 1.51 1.65
    FO-2-S Cement slurry containing silica fume 1.79 1.75 1.98 1.84
    FO-3-S Polymer 1.92 1.85 1.93 1.90
    FO-4-S Epoxy resin 1.77 1.79 1.93 1.83
    FO-0-F Composite specimen 100×100×400 No interfacial agent Flexural strength 2.32 2.59 2.53 2.48 They were used to study the effect of interfacial agent on the flexural strength of the interface.
    FO-1-F Cement paste 3.21 3.22 3.05 3.16
    FO-2-F Cement slurry containing silica fume 3.14 3.40 3.14 3.24
    FO-3-F Polymer 3.41 3.35 3.26 3.34
    FO-4-F Epoxy resin 3.37 3.43 3.49 3.43
    Notes: The numbering rules of the specimens: "O" represented the monolithic ordinary concrete specimen (The specimens were formed at one time and the curing age was 118 days); "FO" represented the full lightweight ceramsite concrete-ordinary concrete composite specimen (They were made of full lightweight ceramsite concrete bonded to C30 ordinary concrete through various interface agents. They were casted in two times); "0" meant the interface was not coated with any interfacial agents; "1" meant that the interface was coated with cement paste; "2" meant the interface was coated with cement slurry containing silica fume; "3" meant that the interface was coated with polymer; "4" meant that the interface was coated with epoxy resin; "T" represented splitting tensile strength; "S" represented shear strength; "F" represented flexural strength.
    下载: 导出CSV

    表  6  计算参数与计算公式

    Table  6.   Calculation parameters and calculation formula

    Calculation parameter Calculation formula
    Level number of influencing factors m
    Sum of the number of tests at all levels n
    Number of tests at j level nj, j=1, 2···m
    With groups mean $ \overline{{x}_{j}}=\dfrac{\displaystyle\sum\nolimits _{i=1}^{{n}_{j}}{x}_{ij}}{{n}_{j}} $, j=1, 2···m
    Grand mean $ \overline{x}=\dfrac{\displaystyle\sum\nolimits _{j=1}^{m}{\displaystyle\sum\nolimits }_{i=1}^{{n}_{j}}{x}_{ij}}{n} $
    Within-group sum of squares $ {S}_{\text{SE}}=\displaystyle\sum _{j=1}^{m}\left[\displaystyle\sum _{i=1}^{{n}_{j}}{\left({x}_{ij}-\overline{{x}_{j}}\right)}^{2}\right] $
    Sum of squares of deviations between groups $ {S}_{\mathrm{S}\mathrm{A}}=\displaystyle\sum _{j=1}^{m}{n}_{j}{\left(\overline{{x}_{j}}-\overline{x}\right)}^{2} $
    Freedom of within-group sum of squares nm
    Freedom of sum of squares of deviations between groups m−1
    Within-group mean square deviation $ {M}_{\mathrm{S}\mathrm{E}}=\dfrac{{S}_{\text{SE}}}{n-m} $
    Mean square deviation between groups $ {M}_{\mathrm{S}\mathrm{A}}=\dfrac{{S}_{\text{SA}}}{m-1} $
    F value $ F=\dfrac{{M}_{\text{SA}}}{{M}_{\text{SE}}} $
    If FF0.025 (m−1, nm) Extremely significant effect
    If F0.025 (m−1, nm)>FF0.05 (m−1, nm) Significant effect
    If F0.05 (m−1, nm)>FF0.10 (m−1, nm) Little effect
    If FF0.10 (m−1, nm) Very little effect
    Note: F—Statistics of test.
    下载: 导出CSV

    表  7  界面剂的影响系数取值

    Table  7.   Value of the influence factors of interfacial agent

    Type of interfacial agent $ {\alpha }_{1} $ $ {\alpha }_{2} $ $ {\alpha }_{3} $
    No interfacial agent 0.562 0.529 0.513
    Cement paste 0.831 0.786 0.654
    Cement slurry containing silica fume 0.847 0.876 0.669
    Polymer 0.863 0.905 0.692
    Epoxy resin 0.900 0.871 0.710
    Note: α1α2α3—Influence coefficient of interfacial agent on splitting tensile, shear and flexural strength.
    下载: 导出CSV
  • [1] 管品武, 尚佳琦, 范家俊, 等. CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究[J]. 复合材料学报, 2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001

    GUAN Pinwu, SHANG Jiaqi, FAN Jiajun, et al. Single-shear test of CFRP plate-engineered cementitious composites-concrete composite interface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2810-2820(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210716.001
    [2] HE Y, ZHANG X, HOOTON R D, et al. Effects of interface roughness and interface adhesion on new-to-old concrete bonding[J]. Construction and Building Materials, 2017, 151: 582-590. doi: 10.1016/j.conbuildmat.2017.05.049
    [3] 吴应雄, 郑新颜, 黄伟, 等. 超高性能混凝土-既有混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 144-154.

    WU Yingxiong, ZHENG Xinyan, HUANG Wei, et al. Review of interface bond behavior between ultra-high performance concrete and existing concrete[J]. Materials Reports, 2023, 37(16): 144-154(in Chinese).
    [4] COURARD L, PIOTROWSKI T, GARBACZ A. Near-to-surface properties affecting bond strength in concrete repair[J]. Cement and Concrete Composites, 2014, 46: 73-80. doi: 10.1016/j.cemconcomp.2013.11.005
    [5] RASHID K, AHMAD M, UEDA T, et al. Experimental investigation of the bond strength between new to old concrete using different adhesive layers[J]. Construction and Building Materials, 2020, 249: 118798. doi: 10.1016/j.conbuildmat.2020.118798
    [6] GADRI K, GUETTALA A. Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect)[J]. Construction and Building Materials, 2017, 159: 1133-1144.
    [7] 张菊辉, 李粤. 新老混凝土结合面黏结强度影响因素研究综述[J]. 混凝土, 2017(8): 156-160. doi: 10.3969/j.issn.1002-3550.2017.08.039

    ZHANG Juhui, LI Yue. Research summary on factors about influencing strength of interface betw een new and old concrete[J]. Concrete, 2017(8): 156-160(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.08.039
    [8] 王少波, 郭进军, 张雷顺, 等. 界面剂对新老混凝土粘结的剪切性能的影响[J]. 工业建筑, 2001, 31(11): 35-38. doi: 10.3321/j.issn:1000-8993.2001.11.012

    WANG Shaobo, GUO Jinjun, ZHANG Leishun, et al. The effect of interfacial agents on the shear property of bond between new and old concrete[J]. Industrial Construction, 2001, 31(11): 35-38(in Chinese). doi: 10.3321/j.issn:1000-8993.2001.11.012
    [9] 黄璐, 卓卫东, 谷音, 等. 界面剂对新旧混凝土界面粘结性能影响的试验研究[J]. 福州大学学报(自然科学版), 2018, 46(3): 396-402.

    HUANG Lu, ZHUO Weidong, GU Yin, et al. Effect test of interface agent on bonding of old and new concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(3): 396-402(in Chinese).
    [10] 李权恒. 界面剂和粗糙度对新老混凝土粘结性能的影响试验研究[D]. 长春: 吉林大学, 2022.

    LI Quanheng. Experimental investigation on the effect of interface agent and roughness on bond performance of new-to-old concrete[D]. Changchun: Jilin University, 2022(in Chinese).
    [11] 黄伟, 方张平. 冻融条件下新老混凝土粘结后抗折性能[J]. 材料科学与工程学报, 2021, 39(5): 745-749, 767. doi: 10.14136/j.cnki.issn.1673-2812.2021.05.006

    HUANG Wei, FANG Zhangping. Adhesive bending properties of new-old concrete under freeze-thaw conditions[J]. Journal of Materials Science and Engineering, 2021, 39(5): 745-749, 767(in Chinese). doi: 10.14136/j.cnki.issn.1673-2812.2021.05.006
    [12] 陈建国, 吴光军, 孙桂山, 等. 硅灰和聚丙烯纤维净浆界面剂对新老混凝土粘结力学性能的影响研究[J]. 新型建筑材料, 2018, 45(4): 52-55. doi: 10.3969/j.issn.1001-702X.2018.04.014

    CHEN Jianguo, WU Guangjun, SUN Guishan, et al. Effect study of silica fume and polymer fiber interface agent on bond mechanics behavior of new and old concrete[J]. New Building Materials, 2018, 45(4): 52-55(in Chinese). doi: 10.3969/j.issn.1001-702X.2018.04.014
    [13] TAYEH B A, BAKAR B H A, JOHARI M A M, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay[J]. Construction and Building Materials, 2012, 36: 538-548. doi: 10.1016/j.conbuildmat.2012.06.013
    [14] 陈坤鹏. 改性环氧界面剂下混凝土粘结面性能试验研究[D]. 郑州: 郑州大学, 2019.

    CHEN Kunpeng. Experimental study on properties of concrete bonding surface under modified epoxy interface agent[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [15] 万惠文, 段亚军, 王永吉, 等. 界面剂类型及不同修补材料对混凝土黏结性能的影响[J]. 混凝土, 2015(12): 138-140, 144. doi: 10.3969/j.issn.1002-3550.2015.12.036

    WAN Huiwen, DUAN Yajun, WANG Yongji, et al. Effect of the types of the primers and different repair materials on the adhesive property of concretes[J]. Concrete, 2015(12): 138-140, 144(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.12.036
    [16] HUANG H, YUAN Y J, ZHANG W, et al. Bond behavior between lightweight aggregate concrete and normal weight concrete based on splitting-tensile test[J]. Construction and Building Materials, 2019, 209: 306-314. doi: 10.1016/j.conbuildmat.2019.03.125
    [17] FENG S, XIAO H G, LI H. Comparative studies of the effect of ultrahigh-performance concrete and normal concrete as repair materials on interfacial bond properties and microstructure[J]. Engineering Structures, 2020, 222: 111122. doi: 10.1016/j.engstruct.2020.111122
    [18] FENG S, XIAO H G, LIU R. The bond properties between ultra-high-performance concrete and normal strength concrete substrate: Bond macro-performance and overlay transition zone microstructure[J]. Cement and Concrete Composites, 2022, 128: 104436. doi: 10.1016/j.cemconcomp.2022.104436
    [19] LIU Y L, WEI Y, LEI M, et al. Restrained shrinkage behavior of internally-cured UHPC using calcined bauxite aggregate in the ring test and UHPC-concrete composite slab[J]. Cement and Concrete Composites, 2022, 134: 104805. doi: 10.1016/j.cemconcomp.2022.104805
    [20] ZHU H B, FU Z H, WANG Y, et al. Study on splitting tensile strength of interface between the full lightweight ceramsite concrete and ordinary concrete[J]. Case Studies in Construction Materials, 2023, 18: e01829. doi: 10.1016/j.cscm.2023.e01829
    [21] COSTA H, CARMO R N F, JULIO E. Influence of lightweight aggregates concrete on the bond strength of concrete-to-concrete interfaces[J]. Construction and Building Materials, 2018, 180: 519-530.
    [22] HUANG H, YUAN Y J, ZHANG W, et al. Microstructure investigation of the interface between lightweight concrete and normal-weight concrete[J]. Materials Today Communications, 2019, 21: 100640. doi: 10.1016/j.mtcomm.2019.100640
    [23] SUN N N, SONG Y F, HOU W, et al. Experimental study on factors influencing ERC-NSC interface bonding performance[J]. Engineering Failure Analysis, 2022, 142: 106819. doi: 10.1016/j.engfailanal.2022.106819
    [24] TIAN J, WU X W, WANG W W, et al. Experimental study and mechanics model of ECC-to-concrete bond interface under tensile loading[J]. Composite Structures, 2022, 285: 115203. doi: 10.1016/j.compstruct.2022.115203
    [25] 向玮衡. 轻质低收缩超高性能混凝土的研究与应用[D]. 武汉: 武汉理工大学, 2021.

    XIANG Weiheng. Research and application of lightweight ultra-high performance concrete with low shrinkage[D]. Wuhan: Wuhan University of Technology, 2021(in Chinese).
    [26] 刘剑辉. SAP与FLWA在超高性能混凝土中的内养护作用[D]. 长沙: 湖南大学, 2019.

    LIU Jianhui. Internal curing of SAP and FLWA in ultra-high performance concrete[D]. Changsha: Hunan University, 2019(in Chinese).
    [27] ZHANG Y, ZHU P, LIAO Z Q, et al. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material[J]. Construction and Building Materials, 2020, 235: 117431. doi: 10.1016/j.conbuildmat.2019.117431
    [28] ZHU H B, FU Z H, LIU P, et al. Shear behavior of stud-PBL composite shear connector for steel-ceramsite concrete composite structure[J]. Coatings, 2022, 12(5): 583. doi: 10.3390/coatings12050583
    [29] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [30] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [31] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [32] 胡少伟, 胡亮. 两种不同加载方法下的混凝土剪切断裂过程对比研究[J]. 土木工程学报, 2016, 49(6): 25-31. doi: 10.15951/j.tmgcxb.2016.06.002

    HU Shaowei, HU Liang. Comparative study on shear fracture process of concrete with two different loading methods[J]. China Civil Engineering Journal, 2016, 49(6): 25-31(in Chinese). doi: 10.15951/j.tmgcxb.2016.06.002
    [33] 胡良明, 马朝猛, 徐晨光. 短龄期新老混凝土粘结强度等效系数[J]. 长江科学院院报, 2017, 34(9): 142-144. doi: 10.11988/ckyyb.20161115

    HU Liangming, MA Chaomeng, XU Chenguang. Equivalent coefficient of short age strength of bonding between new and old concrete[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(9): 142-144(in Chinese). doi: 10.11988/ckyyb.20161115
    [34] 乔连朋, 袁群, 张国岑, 等. 新老混凝土黏结力学性能的时间效应研究[J]. 人民黄河, 2017, 39(4): 111-114. doi: 10.3969/j.issn.1000-1379.2017.04.025

    QIAO Lianpeng, YUAN Qun, ZHANG Guocen, et al. Time effect on mechanical properties of agglutinating new concrete and old concrete[J]. Yellow River, 2017, 39(4): 111-114(in Chinese). doi: 10.3969/j.issn.1000-1379.2017.04.025
    [35] 赵志方, 赵国藩, 黄承逵. 新老混凝土粘结抗折性能研究[J]. 土木工程学报, 2000, 33(2): 67-72. doi: 10.3321/j.issn:1000-131X.2000.02.013

    ZHAO Zhifang, ZHAO Guofan, HUANG Chengkui. Research on adhesive bending behavior of young on old concrete[J]. China Civil Engineering Journal, 2000, 33(2): 67-72(in Chinese). doi: 10.3321/j.issn:1000-131X.2000.02.013
    [36] 高嵩, 班顺莉, 郭嘉, 等. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 97-103.

    GAO Song, BAN Shunli, GUO Jia, et al. Effect of silica fume on interfacial transition zone of recycled concrete[J]. Materials Reports, 2023, 37(11): 97-103(in Chinese).
    [37] 刘生纬, 张家玮, 赵建昌, 等. 硫酸盐干湿交替对碳纤维增强环氧树脂-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(1): 16-23. doi: 10.13801/j.cnki.fhclxb.20170315.003

    LIU Shengwei, ZHANG Jiawei, ZHAO Jianchang, et al. Influence of dry-wet alternation of sulfate on bonding performance of carbon fiber reinforced epoxy-concrete interface[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 16-23(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170315.003
    [38] 孙长征, 张进科, 贾连光, 等. 界面剂对新老混凝土劈拉黏结性能影响的试验研究[J]. 施工技术, 2016, 45(S2): 504-508.

    SUN Changzheng, ZHANG Jinke, JIA Lianguang, et al. Experimental study on the influence of different interface agents on the splitting tensile bond behavior of the new and old concrete interface[J]. Construction Technology, 2016, 45(S2): 504-508(in Chinese).
    [39] 孔德玉, 雷霆, 冯颖慧, 等. 掺合料浆液包覆强化新老混凝土界面[J]. 武汉理工大学学报, 2009, 31(7): 92-95, 140. doi: 10.3963/j.issn.1671-4431.2009.07.024

    KONG Deyu, LEI Ting, FENG Yinghui, et al. Interfacial strengthening of the fresh on old concrete by surface coating with the admixture slurry[J]. Journal of Wuhan University of Technology, 2009, 31(7): 92-95, 140(in Chinese). doi: 10.3963/j.issn.1671-4431.2009.07.024
    [40] 史长城, 于春霞, 王大辉, 等. 地质聚合物界面剂对新老混凝土粘结强度影响研究[J]. 新型建筑材料, 2017, 44(3): 110-113. doi: 10.3969/j.issn.1001-702X.2017.03.028

    SHI Changcheng, YU Chunxia, WANG Dahui, et al. Study on the influence of geopolymer interface agent on bond strength of old and new-to-old concrete[J]. New Building Materials, 2017, 44(3): 110-113(in Chinese). doi: 10.3969/j.issn.1001-702X.2017.03.028
    [41] 冯硕, 石新波, 王威, 等. UHPC-NSC界面黏结性能的评价方法[J]. 建筑材料学报, 2023, 26(11): 1220-1228.

    FENG Shuo, SHI Xinbo, WANG Wei, et al. Research on evaluation method of UHPC-NSC bond strength[J]. Journal of Building Materials, 2023, 26(11): 1220-1228(in Chinese).
    [42] 徐方, 朱婧, 陈建平, 等. 新型聚合物水泥胶浆界面剂粘结性能及作用机理研究[J]. 材料导报, 2012, 26(10): 119-122. doi: 10.3969/j.issn.1005-023X.2012.10.034

    XU Fang, ZHU Jing, CHEN Jianping, et al. Study on the interfacial adhesive performance and enhancement mechanism of polymer modified cement paste interface agent[J]. Materials Reports, 2012, 26(10): 119-122(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.10.034
    [43] 姜晓丹, 孙梦琪, 刘昂, 等. 碳化对环氧树脂与混凝土界面黏结性能影响的分子模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1291-1297. doi: 10.16552/j.cnki.issn1001-1625.2023.04.013

    JIANG Xiaodan, SUN Mengqi, LIU Ang, et al. Molecular simulation study on effect of carbonation on interfacial bonding performance between epoxy resin and concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1291-1297(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2023.04.013
    [44] 乔连朋, 袁群, 冯凌云. 新型界面剂作用下新老混凝土黏结的耐久性能[J]. 公路, 2020, 65(7): 33-37.

    QIAO Lianpeng, YUAN Qun, FENG Lingyun. Durability of new and old concrete bonding under the action of new-type interface agent[J]. Highway, 2020, 65(7): 33-37(in Chinese).
    [45] 中华人民共和国工业和信息化部. 修补砂浆: JC/T 2381—2016[S]. 北京: 中国建材工业出版社, 2016.

    Ministry of Industry and Information Technology of the People's Republic of China. Repairing mortar: JC/T 2381—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).
    [46] 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范: GB/T 50367—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Code for design of strengthening concrete structure: GB/T 50367—2013[S]. Beijing: China Architecture & Building Press, 2013(in Chinese).
    [47] 毛德均, 钱永久. 新老混凝土界面抗剪强度计算方法[J]. 建筑结构, 2016, 46(15): 65-68. doi: 10.19701/j.jzjg.2016.15.013

    MAO Dejun, QIAN Yongjiu. Calculation methods of shear strength on new-to-old concrete interface[J]. Building Structure, 2016, 46(15): 65-68(in Chinese). doi: 10.19701/j.jzjg.2016.15.013
    [48] HABER Z B, MUNOZ J F, VARGA L D L, et al. Bond characterization of UHPC overlays for concrete bridge decks: Laboratory and field testing[J]. Construction and Building Materials, 2018, 190: 1056-1068. doi: 10.1016/j.conbuildmat.2018.09.167
    [49] FARZAD M, SHAFIEIFAR M, AZIZINAMINI A. Experimental and numerical study on bond strength between conventional concrete and ultra high-performance concrete (UHPC)[J]. Engineering Structures, 2019, 186: 297-305. doi: 10.1016/j.engstruct.2019.02.030
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  149
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-11
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-01
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回