留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低冰粘附防/除冰涂层的技术现状及研究趋势

金浩正 矫维成 李君 孙浩淼 彭建 白杰 赫晓东

金浩正, 矫维成, 李君, 等. 低冰粘附防/除冰涂层的技术现状及研究趋势[J]. 复合材料学报, 2024, 41(5): 2181-2200. doi: 10.13801/j.cnki.fhclxb.20231030.004
引用本文: 金浩正, 矫维成, 李君, 等. 低冰粘附防/除冰涂层的技术现状及研究趋势[J]. 复合材料学报, 2024, 41(5): 2181-2200. doi: 10.13801/j.cnki.fhclxb.20231030.004
JIN Haozheng, JIAO Weicheng, LI Jun, et al. Technology status and research trend of low-ice-adhesion anti-icing andde-icing coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2181-2200. doi: 10.13801/j.cnki.fhclxb.20231030.004
Citation: JIN Haozheng, JIAO Weicheng, LI Jun, et al. Technology status and research trend of low-ice-adhesion anti-icing andde-icing coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2181-2200. doi: 10.13801/j.cnki.fhclxb.20231030.004

低冰粘附防/除冰涂层的技术现状及研究趋势

doi: 10.13801/j.cnki.fhclxb.20231030.004
基金项目: 国家自然科学基金 (51872065)
详细信息
    通讯作者:

    矫维成,博士,教授,博士生导师,研究方向为树脂基复合材料、防/除冰材料 E-mail: xiaojiao458@163.com

  • 中图分类号: TB331;TB332

Technology status and research trend of low-ice-adhesion anti-icing andde-icing coatings

Funds: National Natural Science Foundation of China (51872065)
  • 摘要: 结冰是一种常见的自然现象,冰的形成和堆积会给航空航天、舰船交通、电力系统、能源设施等带来许多安全问题。研究防/除冰材料及技术,提升防御结冰灾害的应对能力,对日常生活、工业生产、国防军工等具有重要意义。低冰粘附防/除冰涂层利用材料本身的性能显著降低冰与表面的粘附力,使冰在风力或自重作用下脱离,具有广阔的发展前景。本文首先介绍了冰的形成原理和结冰类型。随后,从纳米、微米等不同尺度总结分析了低冰粘附防/除冰涂层理论模拟方面的研究进展。根据降低冰粘附机制的不同,分别介绍了超疏水涂层、润滑表面涂层、低模量弹性体涂层、应力集中诱发裂纹涂层、低界面韧性涂层等不同类型涂层的除冰机制和制备方法。综述了冰粘附性的评价指标和实验方法,阐述了各种冰粘附强度测试方法的优缺点。最后,展望了低冰粘附防/除冰涂层未来的研究方向。

     

  • 图  1  主动法和被动法

    Figure  1.  Active methods and passive methods

    图  2  自然界中不同类型的冰[13]

    Figure  2.  Different types of ice in nature[13]

    图  3  冰的原子模型(a)[20]和冰在硅表面的原子结构(b)[35]

    Figure  3.  Atomic model of ice (a)[20] and the ice structure on thesurface of silicon (b)[35]

    图  4  不同类型的低冰粘附防/除冰涂层[7, 49, 57, 62, 65-68]

    Figure  4.  Different types of low ice adhesion anti-icing and de-icing coatings[7, 49, 57, 62, 65-68]

    PDMS—Polydimethylsiloxane

    图  5  超疏水涂层的未来发展方向:(a)装甲超疏水涂层[76];(b)自修复超疏水涂层[77];(c)自相似超疏水涂层[78];(d)光热超疏水涂层[44];(e)层次结构超疏水涂层[83];(f)凹入结构超疏水涂层[87]

    CA—Contact angle

    Figure  5.  Future of superhydrophobic coatings: (a) Armored superhydrophobic coatings[76]; (b) Self-healing superhydrophobic coatings[77]; (c) Self-similar superhydrophobic coatings[78]; (d) Photothermal superhydrophobic coatings[44]; (e) Hierarchical superhydrophobic coatings[83]; (f) Re-entrant superhydrophobic coatings[87]

    图  6  润滑表面涂层的未来发展方向:(a)光热润滑表面涂层[46];(b)自修复润滑表面涂层[101];(c)超疏水-润滑表面(SHS & LIS)可切换涂层[102];(d)相变材料复合润滑表面涂层[103];(e)表面纹理优化[105];(f)液膜生成润滑表面涂层[106];(g)界面滑移润滑表面涂层[107]

    PSSS—Photothermal solid slippery surface; CNT—Carbon nanotube; SLIPS—Slippery liquid infused porous surfaces; PTSLIPS—Phase transformable slippery liquid infused porous surfaces; LLG—Liquid layer generators

    Figure  6.  Future of liquid-infused surface coatings: (a) Photothermal lubricated surface coatings[46]; (b) Self-healing lubricated surface coatings[101];(c) Superhydrophobic-lubricated surface (SHS & LIS) switchable coatings[102]; (d) Phase-change-material composite lubricated surface coatings[103]; (e) Optimized surface texture[105]; (f) Liquid-film-generation lubricated surface coatings[106]; (g) Interfacial-slippage lubricated surface coatings[107]

    图  7  低模量弹性体涂层的未来发展方向:(a)自修复低模量弹性体涂层[116];(b)高机械强度低模量弹性体涂层[117]

    Fe-Py-PDMS—Fe-pyridine-polysiloxane; TEOS—Tetraethyl orthosilicate

    Figure  7.  Future of low-modulus elastomer coatings: (a) Self-healing low-modulus elastomer coatings[116]; (b) High-strength low-modulus elastomer coatings[117]

    图  8  应力集中诱发裂纹涂层的未来发展方向:(a)断裂可控表面[51];(b)超疏水复合应力集中诱发裂纹涂层[124];(c)润滑表面复合应力集中诱发裂纹涂层[68]

    PU—Polyurethane; RTV-1—Single-component room temperature vulcanized silicone rubber; R—Radius of water droplets; Rc—Critical size of ice nucleation; SL—Solid lubricant; LL—Liquid lubricant; E51-EP—E51 epoxy resin; α, ω-PDMS—α, ω-polysiloxane; IPN—Interpenetrating polymer network; F-SIDI—Fracture-promoted ultraslippery ice detachment interface; F—Shear force; m—Mass; g—Gravitational acceleration

    Figure  8.  Future of stress-located crack initiator coatings: (a) Fracture-controlled surfaces[51]; (b) Superhydrophobic-composited stress-located crack initiator coatings[124]; (c) Lubricated-surface-composited stress-located crack initiator coatings[68]

    图  9  低界面韧性涂层的未来发展方向:(a)新型低界面韧性涂层[66];(b)主动除冰复合低界面韧性涂层[15];(c)低界面韧性涂层的影响因素[128];(d)低界面韧性涂层的改性[127]

    SRR—Split ring resonator; H, λ—Amplitude and wavelength of surface roughness; β—Shielding factor; PVC—Polyvinyl chloride

    Figure  9.  Future of low-interfacial-toughness coatings: (a) New low-interfacial-toughness coatings[66]; (b) Active-methods-composited low-interfacial-toughness coatings[15]; (c) Factors affecting low-interfacial-toughness coatings[128]; (d) Modification of low-interfacial-toughness coatings[127]

    图  10  试样级冰粘附测试方法:(a)拉伸实验[27];(b)离心实验[133];(c)零度锥实验[54];(d)推离实验[134]

    P—Pressure; c—Length; D—Diameter; LVDT—Linear variable displacement transducer; a—Thickness

    Figure  10.  Sample-oriented test method for ice adhesion strength: (a) Tensile test[27]; (b) Centrifugation test[133]; (c) Zero-degree cone test[54]; (d) Push-off test[134]

    图  11  面向工程的冰粘附测试方法:(a)低温风洞实验[138];(b)自然/人工结冰实验[137]

    LE—Leading edge

    Figure  11.  Engineering-oriented test method for ice adhesion strength: (a) Icing wind tunnel test[138]; (b) Natural/artificial icing test[137]

    表  1  目前的低冰粘附防/除冰涂层

    Table  1.   Low-ice-adhesion anti-icing and de-icing coatings

    TypeDe-icing mechanismAdvantage and disadvantage
    Superhydrophobic coatingsLow surface energy;
    Low actual contact area
    Considered to be the ideal anti-icing and de-icing strategy, significantly reduce ice adhesion;
    Poor durability, not resistant to low temperature and high humidity environment
    Lubricated surface coatingsLubricating liquid film insulating the ice and the surfaceSignificantly reduce the ice adhesion;
    Severe wear, poor durability, and regular maintenance required
    Low-modulus elastomer coatingsThe reduction of shear modulus induces interface cavitation and crack initiationExtremely low adhesion of ice;
    Poor durability
    Stress-located crack initiator coatingsThe stress concentration induces uneven deformation and cracksExtremely low adhesion of ice;
    Poor durability
    Low-interfacial-toughness coatingsReducing interfacial toughness promotes large-scale de-icingSuitable for large area de-icing;
    Poor durability, high cost, complex manufacturing
    下载: 导出CSV
  • [1] TUTEJA A, CHOI W, MA M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. doi: 10.1126/science.1148326
    [2] HU H, GAO L, LIU Y. Chapter 1—Introduction[M]//HU H, GAO L, LIU Y. Wind turbine icing physics and anti-/de-icing technology. United Kingdom: Academic Press, 2022: 1-16.
    [3] 张义昌. 斜拉桥覆冰拉索风致振动分析[D]. 郑州: 郑州大学, 2021.

    ZHANG Yichang. Analysis of wind-induced vibration of ice-covered cable of cable-stayed bridge[D]. Zhengzhou: Zhengzhou University, 2021(in Chinese).
    [4] KLAUS G S, HANS J K, JÜRGEN K, et al . Thermal design and de-icing system for the Antarctic Telescope ICE-T[C]. Proc. SPIE 7733, Ground-based and Airborne Telescopes III, 77331W, 2010.
    [5] LYU J, SONG Y, JIANG L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169. doi: 10.1021/nn406522n
    [6] LI Q Z, GUO L, SHU Z L, et al. On-line anti-icing technology for catenary of electrified railway[J]. Journal of the China Railway Society, 2013, 35(10): 46-51.
    [7] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. doi: 10.1038/nature10447
    [8] 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008

    XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53(in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.008
    [9] PETRENKO V F, PENG S. Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs)[J]. Canadian Journal of Physics, 2003, 81(1-2): 387-393. doi: 10.1139/p03-014
    [10] HURÉ M, OLIVIER P, GARCIA J. Effect of Cassie-Baxter versus Wenzel states on ice adhesion: A fracture toughness approach[J]. Cold Regions Science and Technology, 2022, 194: 103440. doi: 10.1016/j.coldregions.2021.103440
    [11] MAKKONEN L. Ice adhesion—Theory, measurements and counter measures[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5): 413-445. doi: 10.1163/016942411X574583
    [12] 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004. doi: 10.13801/j.cnki.fhclxb.20191129.001

    DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1997-2004(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191129.001
    [13] MOHAMMADIAN B, NAMDARI N, ABOU YASSINE A H, et al. Interfacial phenomena in snow from its formation to accumulation and shedding[J]. Advances in Colloid and Interface Science, 2021, 294: 102480. doi: 10.1016/j.cis.2021.102480
    [14] SHEN Y, WU X, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. doi: 10.1016/j.pmatsci.2019.03.004
    [15] AZIMI DIJVEJIN Z, JAIN M C, KOZAK R, et al. Smart low interfacial toughness coatings for on-demand de-icing without melting[J]. Nature Communications, 2022, 13(1): 5119. doi: 10.1038/s41467-022-32852-6
    [16] YU Y, CHEN L, WENG D, et al. A promising self-assembly PTFE coating for effective large-scale deicing[J]. Progress in Organic Coatings, 2020, 147: 105732. doi: 10.1016/j.porgcoat.2020.105732
    [17] SCHUTZIUS T M, JUNG S, MAITRA T, et al. Physics of icing and rational design of surfaces with extraordinary icephobicity[J]. Langmuir, 2015, 31(17): 4807-4821. doi: 10.1021/la502586a
    [18] LIU J, ZHU C, LIU K, et al. Distinct ice patterns on solid surfaces with various wettabilities[J]. Proceedings of the National Academy of Sciences, 2017, 114(43): 11285-11290. doi: 10.1073/pnas.1712829114
    [19] SEAR R P. Nucleation: Theory and applications to protein solutions and colloidal suspensions[J]. Journal of Physics: Condensed Matter, 2007, 19(3): 033101. doi: 10.1088/0953-8984/19/3/033101
    [20] ZHANG Z, LIU X Y. Control of ice nucleation: Freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116-7139. doi: 10.1039/C8CS00626A
    [21] LIU X Y, DU N. Zero-sized effect of nano-particles and inverse homogeneous nucleation: Principles of freezing and antifreeze[J]. Journal of Biological Chemistry, 2004, 279(7): 6124-6131. doi: 10.1074/jbc.M310487200
    [22] FLETCHER N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. doi: 10.1063/1.1744540
    [23] BEN-JACOB E, GARIK P. The formation of patterns in non-equilibrium growth[J]. Nature, 1990, 343(6258): 523-530. doi: 10.1038/343523a0
    [24] GRAEBER G, SCHUTZIUS T M, EGHLIDI H, et al. Spontaneous self-dislodging of freezing water droplets and the role of wettability[J]. Proceedings of the National Academy of Sciences, 2017, 114(42): 11040-11045. doi: 10.1073/pnas.1705952114
    [25] DHYANI A, CHOI W, GOLOVIN K, et al. Surface design strategies for mitigating ice and snow accretion[J]. Matter, 2022, 5(5): 1423-1454. doi: 10.1016/j.matt.2022.04.012
    [26] Corps of Engineers Washington DC. Ice engineering, EM-1110-2-1612[R]. Washington: Corps of Engineers Washington DC, 1999.
    [27] WORK A, LIAN Y. A critical review of the measurement of ice adhesion to solid substrates[J]. Progress in Aerospace Sciences, 2018, 98: 1-26. doi: 10.1016/j.paerosci.2018.03.001
    [28] SOJOUDI H, WANG M, BOSCHER N D, et al. Durable and scalable icephobic surfaces: Similarities and distinctions from superhydrophobic surfaces[J]. Soft Matter, 2016, 12(7): 1938-1963. doi: 10.1039/C5SM02295A
    [29] RØNNEBERG S, LAFORTE C, VOLAT C, et al. The effect of ice type on ice adhesion[J]. AIP Advances, 2019, 9(5): 55304.
    [30] LØSET S, SHKHINEK K N, GUDMESTAD O T, et al. Actions from ice on Arctic offshore and coastal structures[M]. St Petersburg: Издательство Лань, 2006: 194.
    [31] ZHANG Z, ZHANG H, YUE S, et al. A review of icing and anti-icing technology for transmission lines[J]. Energies, 2023, 16(2): 601. doi: 10.3390/en16020601
    [32] HEIL J, MOHAMMADIAN B, SARAYLOO M, et al. Relationships between surface properties and snow adhesion and its shedding mechanisms[J]. Applied Sciences, 2020, 10(16): 5407. doi: 10.3390/app10165407
    [33] SUN X, DAMLE V G, LIU S, et al. Bioinspired stimuli-responsive and antifreeze-secreting anti-icing coatings[J]. Advanced Materials Interfaces, 2015, 2(5): 1400479. doi: 10.1002/admi.201400479
    [34] NIHONYANAGI S, YAMAGUCHI S, TAHARA T. Water hydrogen bond structure near highly charged interfaces is not like ice[J]. Journal of the American Chemical Society, 2010, 132(20): 6867-6869. doi: 10.1021/ja910914g
    [35] XIAO S, HE J, ZHANG Z. Modeling nanoscale ice adhesion[J]. Acta Mechanica Solida Sinica, 2017, 30: 224-226. doi: 10.1016/j.camss.2017.05.001
    [36] XIAO S, SKALLERUD B H, WANG F, et al. Enabling sequential rupture for lowering atomistic ice adhesion[J]. Nanoscale, 2019, 11(35): 16262-16269. doi: 10.1039/C9NR00104B
    [37] LEROY F, MÜLLER-PLATHE F. Dry-surface simulation method for the determination of the work of adhesion of solid-liquid interfaces[J]. Langmuir, 2015, 31(30): 8335-8345. doi: 10.1021/acs.langmuir.5b01394
    [38] RAMÍREZ R, SINGH J K, MÜLLER-PLATHE F, et al. Ice and water droplets on graphite: A comparison of quantum and classical simulations[J]. The Journal of Chemical Physics, 2014, 141(20): 204701.
    [39] XIAO S, ZHANG Z, HE J. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states[J]. Physical Chemistry Chemical Physics, 2018, 20(38): 24759-24767. doi: 10.1039/C8CP03256D
    [40] ESPINOSA J R, VEGA C, SANZ E. Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/ice, and mW models as obtained from the mold integration technique[J]. The Journal of Physical Chemistry C, 2016, 120(15): 8068-8075. doi: 10.1021/acs.jpcc.5b11221
    [41] DUTTA R C, KHAN S, SINGH J K. Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study[J]. Fluid Phase Equilibria, 2011, 302(1-2): 310-315. doi: 10.1016/j.fluid.2010.07.006
    [42] DE RUIJTER M J, BLAKE T D, DE CONINCK J. Dynamic wetting studied by molecular modeling simulations of droplet spreading[J]. Langmuir, 1999, 15(22): 7836-7847. doi: 10.1021/la990171l
    [43] ZHANG K. Dissipative particle dynamics for anti-icing on solid surfaces[J]. Chemical Physics, 2023, 568: 111824. doi: 10.1016/j.chemphys.2023.111824
    [44] WANG M, YANG T, CAO G, et al. Simulation-guided construction of solar thermal coating with enhanced light absorption capacity for effective icephobicity[J]. Chemical Engineering Journal, 2021, 408: 127316. doi: 10.1016/j.cej.2020.127316
    [45] LI Y, HAN X, JIN H, et al. Understanding superhydrophobic behaviors on hydrophilic materials: A thermodynamic approach[J]. Materials Research Express, 2021, 8(7): 076403. doi: 10.1088/2053-1591/ac1188
    [46] XIANG T, CHEN X, LYU Z, et al. Stable photothermal solid slippery surface with enhanced anti-icing and de-icing properties[J]. Applied Surface Science, 2023, 624: 157178. doi: 10.1016/j.apsusc.2023.157178
    [47] 李鑫林. 仿生超疏水表面的构建及其防冰特性研究[D]. 吉林: 吉林大学, 2020.

    LI Xinlin. Fabrication of bionic superhydrophobic surface and its anti-icing performance[D]. Jilin: Jilin University, 2020(in Chinese).
    [48] SILLS R B, THOULESS M D. The effect of cohesive-law parameters on mixed-mode fracture[J]. Engineering Fracture Mechanics, 2013, 109: 353-368. doi: 10.1016/j.engfracmech.2012.06.006
    [49] HE Z, XIAO S, GAO H, et al. Multiscale crack initiator promoted super-low ice adhesion surfaces[J]. Soft Matter, 2017, 13(37): 6562-6568. doi: 10.1039/C7SM01511A
    [50] YU Y, CHEN L, WENG D, et al. Effect of doping SiO2 nanoparticles and phenylmethyl silicone oil on the large-scale deicing property of PDMS coatings[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48250-48261.
    [51] NAZIFI S, HUANG Z, HAKIMIAN A, et al. Fracture-controlled surfaces as extremely durable ice-shedding materials[J]. Materials Horizons, 2022, 9(10): 2524-2532. doi: 10.1039/D2MH00619G
    [52] FENG A, VINCENT A, PERVIER M L A. Measurement and FEM of ice adhesion to the downstream pipe of an air cycle machine[J]. Cold Regions Science and Technology, 2022, 196: 103512. doi: 10.1016/j.coldregions.2022.103512
    [53] WANG P, ZHAO H, ZHENG B, et al. A super-robust armoured superhydrophobic surface with excellent anti-icing ability[J]. Journal of Bionics Engineering, 2023, 20(5): 1891-1904.
    [54] ZARASVAND K A, MOHSENI M, GOLOVIN K. Cohesive zone analysis of cylindrical ice adhesion: Determining whether interfacial toughness or strength controls fracture[J]. Cold Regions Science and Technology, 2021, 183: 103219. doi: 10.1016/j.coldregions.2020.103219
    [55] SCHULZ M, SINAPIUS M. Evaluation of different ice adhesion tests for mechanical deicing systems[C]. SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE Technical Paper, 2015.
    [56] WILEN L A, WETTLAUFER J S, ELBAUM M, et al. Dispersion-force effects in interfacial premelting of ice[J]. Physical Review B: Condensed Matter, 1995, 52(16): 12426-12433.
    [57] RARATY L E, TABOR D. The adhesion and strength properties of ice[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1958, 245(1241): 184-201.
    [58] JELLINEK H H G. Ice adhesion[J]. Canadian Journal of Physics, 1962, 40(10): 1294-1309. doi: 10.1139/p62-138
    [59] SARSHAR M A, SWARCTZ C, HUNTER S, et al. Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions[J]. Colloid and Polymer Science, 2013, 291: 427-435. doi: 10.1007/s00396-012-2753-4
    [60] NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on —CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323. doi: 10.1021/la981727s
    [61] MEULER A J, SMITH J D, VARANASI K K, et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3100-3110.
    [62] ONDA T, SHIBUICHI S, SATOH N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125-2127. doi: 10.1021/la950418o
    [63] KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577. doi: 10.1021/nn302310q
    [64] PEPPOU-CHAPMAN S, HONG J K, WATERHOUSE A, et al. Life and death of liquid-infused surfaces: A review on the choice, analysis and fate of the infused liquid layer[J]. Chemical Society Reviews, 2020, 49(11): 3688-3715. doi: 10.1039/D0CS00036A
    [65] BEEMER D L, WANG W, KOTA A K. Durable gels with ultra-low adhesion to ice[J]. Journal of Materials Chemistry A, 2016, 4(47): 18253-18258. doi: 10.1039/C6TA07262C
    [66] GOLOVIN K, DHYANI A, THOULESS M D, et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science, 2019, 364(6438): 371-375. doi: 10.1126/science.aav1266
    [67] ZHU G, SU J, YIN C, et al. Constructing a robust ZIF-7 based superhydrophobic coating with the excellent performance in self-cleaning, anti-icing, anti-biofouling and anti-corrosion[J]. Applied Surface Science, 2023, 622: 156907. doi: 10.1016/j.apsusc.2023.156907
    [68] WANG Z, ZHAO Z, WEN G, et al. Fracture-promoted ultraslippery ice detachment interface for long-lasting anti-icing[J]. ACS Nano, 2023, 17(14): 13724-13733. doi: 10.1021/acsnano.3c03023
    [69] DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2014, 2(39): 16319-16359. doi: 10.1039/C4TA02071E
    [70] SVINTERIKOS E, ZUBURTIKUDIS I, KHALIFEH H A, et al. Multifunctional polymer-based coatings for outdoor glass surfaces: A state of the art[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(3): 310-332.
    [71] JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15: 231-250. doi: 10.1007/s11998-017-0011-x
    [72] SON S M, KIM M, YOO J J, et al. Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating[J]. Composites Science and Technology, 2023, 238: 110048. doi: 10.1016/j.compscitech.2023.110048
    [73] ZENG Q, ZHOU H, HUANG J, et al. Review on the recent development of durable superhydrophobic materials for practical applications[J]. Nanoscale, 2021, 13(27): 11734-11764. doi: 10.1039/D1NR01936H
    [74] PAN R, ZHANG H, ZHONG M. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2020, 13(1): 1743-1753.
    [75] ZHU T, CHENG Y, HUANG J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning[J]. Chemical Engineering Journal, 2020, 399: 125746. doi: 10.1016/j.cej.2020.125746
    [76] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. doi: 10.1038/s41586-020-2331-8
    [77] FU K, LU C, LIU Y, et al. Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction[J]. Chemical Engineering Journal, 2021, 404: 127110. doi: 10.1016/j.cej.2020.127110
    [78] CHENG Y, WANG Y, ZHANG X, et al. Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing[J]. Nano Research, 2023, 16(5): 7171-7179.
    [79] WANG P, YAO T, LI Z, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307. doi: 10.1016/j.compscitech.2020.108307
    [80] ZHAO Z, CHEN H, LIU X, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology, 2018, 349: 340-346. doi: 10.1016/j.surfcoat.2018.06.011
    [81] WU X, LIAO Y, YAO L, et al. A non-percolative rGO/XLPE composite with high electrothermal performance at high voltage and effective de-/anti-icing for transmission-lines[J]. Composites Science and Technology, 2022, 230: 109772.
    [82] ZHAO Z, CHEN H, ZHU Y, et al. A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances[J]. Composites Science and Technology, 2022, 227: 109578. doi: 10.1016/j.compscitech.2022.109578
    [83] WANG L, GONG Q, ZHAN S, et al. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Advanced Materials, 2016, 28(35): 7729-7735. doi: 10.1002/adma.201602480
    [84] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.

    LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese).
    [85] 邓朝辉, 金汝诗, 戚栋明, 等. 防覆/除冰功能复合材料的制备和应用研究进展[J]. 复合材料学报, 2023, 40(10): 4930-4942. doi: 10.13801/j.cnki.fhclxb.20230302.001

    DENG Chaohui, JIN Rushi, QI Dongming, et al. Preparation of anti-icing/deicing functional composite materials and its research progress[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 4930-4942(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230302.001
    [86] 石婷. 双疏减反射涂层的制备及性能研究[D]. 常州: 常州大学, 2022.

    SHI Ting. Preparation and properties of amphiphobic antireflective coating[D]. Changzhou: Changzhou University, 2022(in Chinese).
    [87] LEE S E, KIM H J, LEE S H, et al. Superamphiphobic surface by nanotransfer molding and isotropic etching[J]. Langmuir, 2013, 29(25): 8070-8075. doi: 10.1021/la4011086
    [88] 杜娟, 汪鸿宇, 石玉超, 等. 基于MOF材料的涂层应用与机制研究进展[J]. 复合材料学报, 2024, 41(3): 1095-1110.

    DU Juan, WANG Hongyu, SHI Yuchao, et al. Research progress on coating application and mechanism based on MOF materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1095-1110(in Chinese).
    [89] WANG L, MCCARTHY T J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency[J]. Angewandte Chemie International Edition, 2016, 55(1): 244-248. doi: 10.1002/anie.201509385
    [90] LESLIE D C, WATERHOUSE A, BERTHET J B, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling[J]. Nature Biotechnology, 2014, 32(11): 1134-1140. doi: 10.1038/nbt.3020
    [91] SATTARI M, OLAD A, MARYAMI F, et al. Facile fabrication of durable and fluorine-free liquid infused surfaces on aluminum substrates with excellent anti-icing, anticorrosion, and antibiofouling properties[J]. Surfaces and Interfaces, 2023, 38: 102860. doi: 10.1016/j.surfin.2023.102860
    [92] LIU M, HOU Y, LI J, et al. Transparent slippery liquid-infused nanoparticulate coatings[J]. Chemical Engineering Journal, 2018, 337: 462-470. doi: 10.1016/j.cej.2017.12.118
    [93] LYU J, YAO X, ZHENG Y, et al. Antiadhesion organogel materials: From liquid to solid[J]. Advanced Materials, 2017, 29(45): 1703032. doi: 10.1002/adma.201703032
    [94] ZHANG J, LIU B, TIAN Y, et al. Facile one-step method to fabricate a slippery lubricant-infused surface (LIS) with self-replenishment properties for anti-icing applications[J]. Coatings, 2020, 10(2): 119. doi: 10.3390/coatings10020119
    [95] HE Z, WU C, HUA M, et al. Bioinspired multifunctional anti-icing hydrogel[J]. Matter, 2020, 2(3): 723-734. doi: 10.1016/j.matt.2019.12.017
    [96] CHEN D, GELENTER M D, HONG M, et al. Icephobic surfaces induced by interfacial nonfrozen water[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 4202-4214.
    [97] YU Y, JIN B, JAMIL M I, et al. Highly stable amphiphilic organogel with exceptional anti-icing performance[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12838-12845.
    [98] OZBAY S, YUCEEL C, ERBIL H Y. Improved icephobic properties on surfaces with a hydrophilic lubricating liquid[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 22067-22077.
    [99] LIU X, CHEN H, ZHAO Z, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology, 2019, 374: 889-896. doi: 10.1016/j.surfcoat.2019.06.077
    [100] ZHOU P, WANG Y, ZHANG X. Bi2Se3 nanosheets-based photothermal composites with hydrophobic surface for synergistic anti-/de-icing[J]. Composites Science and Technology, 2023, 233: 109916. doi: 10.1016/j.compscitech.2023.109916
    [101] TAN S, HAN X, CHENG S, et al. Photothermal solid slippery surfaces with rapid self-healing, improved anti/de-icing and excellent stability[J]. Macromolecular Rapid Communications, 2023, 44(6): 2200816. doi: 10.1002/marc.202200816
    [102] WANG L, TIAN Z, ZHU D, et al. Environmentally adapted slippery-superhydrophobic switchable interfaces for anti-icing[J]. Applied Surface Science, 2023, 626: 157201. doi: 10.1016/j.apsusc.2023.157201
    [103] WANG F, DING W, HE J, et al. Phase transition enabled durable anti-icing surfaces and its DIY design[J]. Chemical Engineering Journal, 2019, 360: 243-249. doi: 10.1016/j.cej.2018.11.224
    [104] SHAMSHIRI M, JAFARI R, MOMEN G. A novel hybrid anti-icing surface combining an aqueous self-lubricating coating and phase-change materials[J]. Progress in Organic Coatings, 2023, 177: 107414. doi: 10.1016/j.porgcoat.2023.107414
    [105] VOGEL N, BELISLE R A, HATTON B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers[J]. Nature Communications, 2013, 4(1): 2176. doi: 10.1038/ncomms3176
    [106] WANG F, XIAO S, ZHUO Y, et al. Liquid layer generators for excellent icephobicity at extremely low temperatures[J]. Materials Horizons, 2019, 6(10): 2063-2072. doi: 10.1039/C9MH00859D
    [107] GOLOVIN K, KOBAKU S P R, LEE D H, et al. Designing durable icephobic surfaces[J]. Science Advances, 2016, 2(3): e1501496. doi: 10.1126/sciadv.1501496
    [108] GOLOVIN K, TUTEJA A. A predictive framework for the design and fabrication of icephobic polymers[J]. Science Advances, 2017, 3(9): e1701617. doi: 10.1126/sciadv.1701617
    [109] GRIFFITH A A. VI. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221(582-593): 163-198. doi: 10.1098/rsta.1921.0006
    [110] KENDALL K. The adhesion and surface energy of elastic solids[J]. Journal of Physics D: Applied Physics, 1971, 4(8): 1186. doi: 10.1088/0022-3727/4/8/320
    [111] CROSBY A J, SHULL K R, LAKROUT H, et al. Deformation and failure modes of adhesively bonded elastic layers[J]. Journal of Applied Physics, 2000, 88(5): 2956-2966. doi: 10.1063/1.1288017
    [112] CHAUDHURY M K, KIM K H. Shear-induced adhesive failure of a rigid slab in contact with a thin confined film[J]. The European Physical Journal E, 2007, 23: 175-183. doi: 10.1140/epje/i2007-10171-x
    [113] WANG C, FULLER T, ZHANG W, et al. Thickness dependence of ice removal stress for a polydimethylsiloxane nanocomposite: Sylgard 184[J]. Langmuir, 2014, 30(43): 12819-12826. doi: 10.1021/la5030444
    [114] LIU Y, MA L, WANG W, et al. An experimental study on soft PDMS materials for aircraft icing mitigation[J]. Applied Surface Science, 2018, 447: 599-609. doi: 10.1016/j.apsusc.2018.04.032
    [115] ZHUO Y, XIAO S, AMIRFAZLI A, et al. Polysiloxane as icephobic materials—The past, present and the future[J]. Chemical Engineering Journal, 2021, 405: 127088. doi: 10.1016/j.cej.2020.127088
    [116] ZHUO Y, HÅKONSEN V, HE Z, et al. Enhancing the mechanical durability of icephobic surfaces by introducing autonomous self-healing function[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11972-11978.
    [117] SOBHANI S, BAKHSHANDEH E, JAFARI R, et al. Mechanical properties, icephobicity, and durability assessment of HT-PDMS nanocomposites: Effectiveness of sol-gel silica precipitation content[J]. Journal of Sol-Gel Science and Technology, 2023, 105(2): 348-359. doi: 10.1007/s10971-022-06033-2
    [118] BLAISZIK B J, KRAMER S L B, OLUGEBEFOLA S C, et al. Self-healing polymers and composites[J]. Annual Review of Materials Research, 2010, 40: 179-211. doi: 10.1146/annurev-matsci-070909-104532
    [119] ROY N, BRUCHMANN B, LEHN J M. Dynamers: Dynamic polymers as self-healing materials[J]. Chemical Society Reviews, 2015, 44(11): 3786-3807. doi: 10.1039/C5CS00194C
    [120] ZHUO Y, HÅKONSEN V, LIU S, et al. Ultra-robust icephobic coatings with high toughness, strong substrate adhesion and self-healing capability[J]. Science China materials, 2023, 66(5): 2071-2078.
    [121] SONG P, WANG H. High-performance polymeric materials through hydrogen-bond cross-linking[J]. Advanced Materials, 2020, 32(18): 1901244. doi: 10.1002/adma.201901244
    [122] SIJBESMA R P, BEIJER F H, BRUNSVELD L, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J]. Science, 1997, 278(5343): 1601-1604. doi: 10.1126/science.278.5343.1601
    [123] MORELLE X P, ILLEPERUMA W R, TIAN K, et al. Highly stretchable and tough hydrogels below water freezing temperature[J]. Advanced Materials, 2018, 30(35): 1801541. doi: 10.1002/adma.201801541
    [124] JAMIL M I, ZHAN X, CHEN F, et al. Durable and scalable candle soot icephobic coating with nucleation and fracture mechanism[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31532-31542.
    [125] IRAJIZAD P, AL-BAYATI A, ESLAMI B, et al. Stress-localized durable icephobic surfaces[J]. Materials Horizons, 2019, 6(4): 758-766. doi: 10.1039/C8MH01291A
    [126] MENINI R, FARZANEH M. Advanced icephobic coatings[J]. Journal of Adhesion Science and Technology, 2011, 25(9): 971-992. doi: 10.1163/016942410X533372
    [127] WANG P, YANG M, ZHENG B, et al. Soft and rigid integrated durable coating for large-scale deicing[J]. Langmuir, 2022, 39(1): 403-410.
    [128] MOHSENI M, RECLA L, MORA J, et al. Quasicrystalline coatings exhibit durable low interfacial toughness with ice[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36517-36526.
    [129] DHYANI A, PIKE C, BRAID J L, et al. Facilitating large-scale snow shedding from in-field solar arrays using icephobic surfaces with low-interfacial toughness[J]. Advanced Materials Technologies, 2022, 7(5): 2101032. doi: 10.1002/admt.202101032
    [130] YU Y, CHEN L, WENG D, et al. Solvent volatilization-induced cross-linking of PDMS coatings for large-scale deicing applications[J]. ACS Applied Polymer Materials, 2022, 5(1): 57-66.
    [131] RØNNEBERG S, ZHUO Y, LAFORTE C, et al. Interlaboratory study of ice adhesion using different techniques[J]. Coatings, 2019, 9(10): 678. doi: 10.3390/coatings9100678
    [132] DHYANI A, WANG J, HALVEY A K, et al. Design and applications of surfaces that control the accretion of matter[J]. Science, 2021, 373(6552): eaba5010. doi: 10.1126/science.aba5010
    [133] KULINICH S A, FARZANEH M. Ice adhesion on super-hydrophobic surfaces[J]. Applied Surface Science, 2009, 255(18): 8153-8157. doi: 10.1016/j.apsusc.2009.05.033
    [134] ZHU Z, LIANG H, SUN D W. Infusing silicone and camellia seed oils into micro-/nanostructures for developing novel anti-icing/frosting surfaces for food freezing applications[J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14874-14883.
    [135] LAFORTE C, LAFORTE J L. Deicing strains and stresses of iced substrates[J]. Journal of Adhesion Science and Technology, 2012, 26(4-5): 603-620. doi: 10.1163/016942411X574790
    [136] RØNNEBERG S, HE J, ZHANG Z. The need for standards in low ice adhesion surface research: A critical review[J]. Journal of Adhesion Science and Technology, 2020, 34(3): 319-347. doi: 10.1080/01694243.2019.1679523
    [137] GAO L, TAO T, LIU Y, et al. A field study of ice accretion and its effects on the power production of utility-scale wind turbines[J]. Renewable Energy, 2021, 167: 917-928. doi: 10.1016/j.renene.2020.12.014
    [138] PENG Y, VEERAKUMAR R, ZHANG Z, et al. An experimental study on mitigating dynamic ice accretion process on bridge cables with a superhydrophobic coating[J]. Experimental Thermal and Fluid Science, 2022, 132: 110573. doi: 10.1016/j.expthermflusci.2021.110573
    [139] VEERAKUMAR R, GAO L, LIU Y, et al. Dynamic ice accretion process and its effects on the aerodynamic drag characteristics of a power transmission cable model[J]. Cold Regions Science and Technology, 2020, 169: 102908. doi: 10.1016/j.coldregions.2019.102908
    [140] 董笑宇. 基于超声微振动的风力机叶片防/除冰仿真与试验研究[D]. 哈尔滨: 东北农业大学, 2021.

    DONG Xiaoyu. Simulation and experimental researches on anti-icing and de-icing of wind turbine blade based on ultrasonic micro-vibration[D]. Harbin: Northeast Agricultural University, 2021(in Chinese).
    [141] 陈建兵, 刘伯林, 陈万华, 等. 大型低温风洞模型进出系统关键技术分析[J]. 实验流体力学, 2022, 36(1): 37-43. doi: 10.11729/syltlx20210140

    CHEN Jianbing, LIU Bolin, CHEN Wanhua, et al. Key technology for model access system in cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 37-43(in Chinese). doi: 10.11729/syltlx20210140
    [142] VEERAKUMAR R, TIAN L, HU H, et al. An experimental study of dynamic icing process on an aluminum-conductor-steel-reinforced power cable with twisted outer strands[J]. Experimental Thermal and Fluid Science, 2023, 142: 110823. doi: 10.1016/j.expthermflusci.2022.110823
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  204
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-09-26
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回