留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫填充四韧带反手性结构和内凹结构的面内压缩性能

石南南 张伟晨 李振宝 王利辉 刘晗 张雷 夏阳

石南南, 张伟晨, 李振宝, 等. 泡沫填充四韧带反手性结构和内凹结构的面内压缩性能[J]. 复合材料学报, 2024, 41(6): 2917-2928. doi: 10.13801/j.cnki.fhclxb.20231027.001
引用本文: 石南南, 张伟晨, 李振宝, 等. 泡沫填充四韧带反手性结构和内凹结构的面内压缩性能[J]. 复合材料学报, 2024, 41(6): 2917-2928. doi: 10.13801/j.cnki.fhclxb.20231027.001
SHI Nannan, ZHANG Weichen, LI Zhenbao, et al. In-plane compression properties of foam-filled anti-tetrachiral structure and re-entrant structure[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2917-2928. doi: 10.13801/j.cnki.fhclxb.20231027.001
Citation: SHI Nannan, ZHANG Weichen, LI Zhenbao, et al. In-plane compression properties of foam-filled anti-tetrachiral structure and re-entrant structure[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2917-2928. doi: 10.13801/j.cnki.fhclxb.20231027.001

泡沫填充四韧带反手性结构和内凹结构的面内压缩性能

doi: 10.13801/j.cnki.fhclxb.20231027.001
基金项目: 国家自然科学基金(52278134)
详细信息
    通讯作者:

    石南南,博士,副教授,硕士生导师,研究方向为地震超材料、隔震减震新技术、结构实验技术 E-mail:snn@bjut.edu.cn

  • 中图分类号: TB332

In-plane compression properties of foam-filled anti-tetrachiral structure and re-entrant structure

Funds: National Natural Science Foundation of China (52278134)
  • 摘要: 负泊松比蜂窝结构具有优良的力学性能,包括抗压痕性、抗冲击性、吸能性。为了更好地研究负泊松比结构的力学性能,分别选取了内凹结构和四韧带反手性结构两种负泊松比结构进行对比分析。为了提高蜂窝结构的力学性能,在结构中填充聚氨酯泡沫材料。并对填充后的内凹结构和四韧带反手性结构的变形模式和力学性能进行了试验研究。此外通过对填充四韧带反手性结构进行参数研究,分析了壁厚t和节点半径r对结构吸能性和泊松比的影响。研究结果表明:四韧带反手性结构比内凹结构的吸能性好、承载能力强。对两种结构分别进行填充后,结构具有更高的的刚度和吸能性,但是“拉胀”效应减弱。随着壁厚t和节点半径r的增加,填充四韧带反手性结构的刚度和能量吸收能力增强,泊松比值增大,“拉胀”效应减弱。但是壁厚过大会使结构脆性破坏增强,其比吸能性降低。另外随着壁厚t增大、节点半径减小,填充四韧带反手性结构的压实应变减小。

     

  • 图  1  不同负泊松比结构示意图

    Figure  1.  Diagram of different negative Poisson's ratio structures

    图  2  不同负泊松比结构单胞示意图

    Figure  2.  Unit cell schematic of different negative Poisson's ratio structures

    a—Horizontal rib length; t1—Wall thickness of RS; h—Height; θ—Angle of inclination of the ribs; L—Horizontal and vertical center-to-center distance between ATC cells; t2—Wall thickness of ATC; r—Radius of the circular node; ATC—Anti-tetrachiral structure; RS—Re-entrant structure

    图  3  内凹结构、四韧带反手性结构3D打印结构示意图(a)和聚氨酯泡沫填充结构示意图(b)

    Figure  3.  3D printing structure diagram of re-entrant structure and anti-tetrachiral structure (a) and polyurethane foam filling structure diagram (b)

    图  4  测量试件泊松比的标记点示意图

    Figure  4.  Marking point images for measuring Poisson's ratio of specimen

    图  5  准静态压缩试验下RS结构填充前(a)、填充后(b)的变形模式

    Figure  5.  Deformation mode of RS structure before (a) and after (b) filling under quasi-static compression test

    图  6  内凹结构(RS)(a)、四韧带反手性结构(ATC)(b)填充前后的应力-应变关系曲线

    H—Hollow; F—Filling

    Figure  6.  Stress-strain relationship curves of the re-entrant structure (RS) (a) and the anti-tetrachiral structure (ATC) of four ligaments (b) before and after filling

    图  7  准静态压缩试验下ATC3结构填充前后的变形模式

    Figure  7.  Deformation mode of ATC3 structure before and after filling under quasi-static compression test

    图  8  准静态压缩试验下四韧带反手性结构和内凹结构的比吸能(ESA)-应变关系曲线(a)、泊松比曲线(b)

    Figure  8.  Specific energy absorption (ESA)-strain curves (a) and Poisson's ratio curves (b) of the anti-tetrachiral structure and re-entrant structure under quasi-static compression test

    图  9  准静态压缩试验下不同参数ATC结构的变形模式

    Figure  9.  Deformation modes of ATC structures with different parameters under quasi-static compression test

    图  10  不同壁厚(a)、不同节点半径(b)的ATC结构应力-应变关系曲线

    Figure  10.  Stress-strain curves of ATC structures with different wall thicknesses (a) and different joint radii (b)

    图  11  不同壁厚(a)、不同节点半径(b)的ATC结构ESA-应变曲线

    Figure  11.  ESA-strain curves of ATC structures with different wall thicknesses (a) and different joint radii (b)

    图  12  不同壁厚(a)、不同节点半径(b)的ATC结构泊松比变化曲线

    Figure  12.  Poisson's ratio curves of ATC structures with different wall thicknesses (a) and different joint radii (b)

    表  1  不同参数ATC结构的准静态压缩试验能量吸收指标

    Sample classATC1ATC2ATC3ATC4ATC5ATC6
    εD0.630.560.610.620.600.56
    SEA/(J·kg-1)256627122810369032602513
    σmax/MPa1.592.062.553.284.405.75
    下载: 导出CSV

    表  1  四韧带反手性结构(ATC)参数

    Table  1.   Anti-tetrachiral structure (ATC) parameters

    SampleL/mmr/mmt/mm
    ATC112.504.000.75
    ATC212.503.501.00
    ATC312.504.001.00
    ATC412.504.501.00
    ATC512.504.001.25
    ATC612.504.001.50
    下载: 导出CSV

    表  2  内凹结构(RS)参数

    Table  2.   Re-entrant structure (RS) parameters

    Samplea/mmh/mmθ/(°)t/mm
    RS2525552
    下载: 导出CSV

    表  3  C-UV9400 E的材料性能

    Table  3.   Material properties of C-UV9400 E

    Materials Strength of extension/MPa Young's modulus/MPa Elongation at break/% Density/(g·cm−3)
    C-UV9400 E 56 2650 12 1.19
    下载: 导出CSV

    表  4  不同参数ATC结构的准静态压缩试验能量吸收指标

    Table  4.   Energy absorption indexes of quasi-static compression test of ATC structures with different parameters

    Sample εD ESA/(J·kg−1) σmax/MPa
    ATC1 0.63 2566 1.59
    ATC2 0.56 2712 2.06
    ATC3 0.61 2810 2.55
    ATC4 0.62 3690 3.28
    ATC5 0.60 3260 4.40
    ATC6 0.56 2513 5.75
    下载: 导出CSV
  • [1] EVANS K E. Auxetic polymers: A new range of materials[J]. Endeavour, 1991, 15(4): 170-174
    [2] LOVE A E H. A treatise on the mathematical theory of elasticity[M]. Cambridge: Cambridge University Press, 1927: 104-106
    [3] SCARPA F. Auxetic materials for bioprostheses[J]. IEEE Signal Processing Magazine, 2008, 25(5): 126-128
    [4] LIU Y, HU H. A review on auxetic structures and polymeric materials[J]. Scientific Research and Essays, 2010, 5(10): 1052-1063.
    [5] LIU Q. Literature review: Materials with negative Poisson's ratios and potential applications to aerospace and defence[M]. Victoria: DSTO, 2006: 31-37.
    [6] MA Z D, BIAN H, SUN C, et al. Functionally-graded NPR (negative Poisson's ratio) material for a blast-protective deflector[C]//Proceedings of the 2010 NDIA Ground Vehicle Systems Engineering and Technology Symposium Modeling & Simulation, Testing and Validation Mini-Symposium. Dearborn: 2010: 17-19.
    [7] MA Y, SCARPA F, ZHANG D, et al. A nonlinear auxetic structural vibration damper with metal rubber particles[J]. Smart Materials and Structures, 2013, 22(8): 084012. doi: 10.1088/0964-1726/22/8/084012
    [8] 尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能[J]. 复合材料学报, 2022, 39(7): 3570-3580. doi: 10.13801/j.cnki.fhclxb.20210729.003

    YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of arc concave honeycomb structure with negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3570-3580(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.003
    [9] 刘旭畅, 李爽, 杨金水. 一种新型手性负泊松比结构的减振性能[J]. 复合材料学报, 2024, 41(1): 477-484.

    LIU Xuchang, LI Shuang, YANG Jinshui. Damping performance of a new chiral negative Poisson's ratio structure [J]. Acta Materiae Compositae Sinica, 2024, 41(1): 477-484(in Chinese).
    [10] 刘浩, 周宏元, 王小娟, 等. 泡沫混凝土填充旋转薄壁多胞方管负泊松比结构面内压缩性能[J]. 复合材料学报, 2024, 41(2): 839-857.

    LIU Hao, ZHOU Hongyuan, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio structure of rotating thin walled multi-cell square tubes with foam concrete filler[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 839-857(in Chinese).
    [11] 高飞宇. 四韧带反手性蜂窝的面外变形分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    GAO Feiyu. Analysis of out-of-plane deformation of anti-tetra-chiral honeycomb[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
    [12] 吕亦乐. 负泊松比超材料的减振性能研究[D]. 成都: 电子科技大学, 2020.

    LYU Yile. Study on damping performance of negative Poisson's ratio metamaterials[D]. Chengdu: School of Mechanical and Electrical Engineering, 2020(in Chinese).
    [13] 王奕霖, 秦卫阳, 刘琦. 负泊松比超材料减振结构设计与实验验证[J]. 动力学与控制学报, 2023, 21(5): 53-59.

    WANG Yilin, QIN Weiyang, LIU Qi. A vibration attenuation structure based on negative Poisson' ratio metamaterial and its experimental validation[J]. Journal of Dynamics and Control, 2023, 21(5): 53-59(in Chinese).
    [14] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014. doi: 10.13801/j.cnki.fhclxb.20191207.001

    ZHOU Hongyuan, JIA Kuncheng, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191207.001
    [15] 赵飞, 朱鹏飞, 李梦瑶, 等. 钢筋混凝土的负泊松比设计与抗弯性能研究[J]. 硅酸盐通报, 2023, 42(5): 1640-1649. doi: 10.16552/j.cnki.issn1001-1625.2023.05.005

    ZHAO Fei, ZHU Pengfei, LI Mengyao, et al. Negative Poisson' ratio design and flexural performance of reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1640-1649(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2023.05.005
    [16] 王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用[D]. 南京: 南京理工大学, 2019.

    WANG Tao. Mechanical research of an auxetic cellular structure and its application in commercial vehicle crashworthiness optimization design[D]. Nanjing: Nanjing University of Science and Technology, 2019(in Chinese).
    [17] 马芳武, 梁鸿宇, 赵颖, 等. 倾斜荷载下内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2020, 39(4): 81-87. doi: 10.13465/j.cnki.jvs.2020.04.010

    MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. In-plane dynamic crushing of concave triangles materials with negative Poisson's ratio under inclined load[J]. Journal of Vibration and Shock, 2020, 39(4): 81-87(in Chinese). doi: 10.13465/j.cnki.jvs.2020.04.010
    [18] PENG B, YANG Y, GU K, et al. Digital light processing 3D printing of triple shape memory polymer for sequential shape shifting[J]. ACS Materials Letters, 2019, 1(4): 410-417 doi: 10.1021/acsmaterialslett.9b00262
    [19] 罗伟洪, 何婉青, 吴文军, 等. 不同速度下负泊松比弧形结构的变形行为[J]. 爆炸与冲击, 2023, 43(11): 75-87.

    LUO Weihong, HE Wanqing, WU Wenjun, et al. Deformation behavior of curved structures with negative Poisson's ratio at diverse velocities[J]. Explosion and Shock Waves, 2023, 43(11): 75-87(in Chinese).
    [20] LI T, CHEN Y, HU X, et al. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties[J]. Materials & Design, 2018, 142: 247-258.
    [21] SCARPA F, TOMLIN P J. On the transverse shear modulus of negative Poisson's ratio honeycomb structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(8): 717-720.
    [22] LAKES R S, ELMS K. Indentability of conventional and negative Poisson's ratio foams[J]. Journal of Composite Materials, 1993, 27(12): 1193-1202. doi: 10.1177/002199839302701203
    [23] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040. doi: 10.1126/science.235.4792.1038
    [24] OH J H, KIM J S, OH I K. Auxetic graphene oxide-porous foam for acoustic wave and shock energy dissipation[J]. Composites Part B: Engineering, 2020, 186: 107817. doi: 10.1016/j.compositesb.2020.107817
    [25] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings[J]. Composite Structures, 2016, 135: 339-352. doi: 10.1016/j.compstruct.2015.09.038
    [26] ZHOU J, LIU H, JOHN P, et al. Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures[J]. International Journal of Mechanical Sciences, 2023, 244: 108054. doi: 10.1016/j.ijmecsci.2022.108054
    [27] LUO H C, REN X, ZHANG Y, et al. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression[J]. Composite Structures, 2022, 280: 114922. doi: 10.1016/j.compstruct.2021.114922
    [28] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1): 47-57.

    HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion and Shock Waves, 2019, 39(1): 47-57(in Chinese).
    [29] PIETRAS D, LINUL E, SADOESKI T, et al. Out-of-plane crushing response of aluminum honeycombs in-situ filled with graphene-reinforced polyurethane foam[J]. Composite Structures, 2020, 249: 112548. doi: 10.1016/j.compstruct.2020.112548
    [30] ALOMARAH A, MASOOD S H, SBARSKI L, et al. Compressive properties of 3D printed auxetic structures: Experimental and numerical studies[J]. Virtual and Physical Prototyping, 2020, 15(1): 1-21. doi: 10.1080/17452759.2019.1644184
    [31] SHEN J, LU G, RUAN D. Compressive behaviour of closed-cell aluminium foams at high strain rates[J]. Composites Part B: Engineering, 2010, 41: 678-685.
    [32] HABIB F N, IOVENITTI P. In-plane energy absorption evaluation of 3D printed polymeric honeycombs[J]. Virtual and Physical Prototyping, 2017, 12: 117-131. doi: 10.1080/17452759.2017.1291354
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  187
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-10-17
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回