留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4表面氨基化改性光催化增强机制

李晓莉

李晓莉. g-C3N4表面氨基化改性光催化增强机制[J]. 复合材料学报, 2024, 41(6): 3068-3076. doi: 10.13801/j.cnki.fhclxb.20231026.003
引用本文: 李晓莉. g-C3N4表面氨基化改性光催化增强机制[J]. 复合材料学报, 2024, 41(6): 3068-3076. doi: 10.13801/j.cnki.fhclxb.20231026.003
LI Xiaoli. Surface amination modification of g-C3N4 and enhancement mechanism study[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3068-3076. doi: 10.13801/j.cnki.fhclxb.20231026.003
Citation: LI Xiaoli. Surface amination modification of g-C3N4 and enhancement mechanism study[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3068-3076. doi: 10.13801/j.cnki.fhclxb.20231026.003

g-C3N4表面氨基化改性光催化增强机制

doi: 10.13801/j.cnki.fhclxb.20231026.003
基金项目: 陕西省数理基础研究项目(22JSY001)
详细信息
    通讯作者:

    李晓莉,硕士,实验师,研究方向为光学工程和复合材料光电性能研究, E-mail:ring0163@126.com

  • 中图分类号: TQ032.4; TB332

Surface amination modification of g-C3N4 and enhancement mechanism study

Funds: Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY001)
  • 摘要: 以g-C3N4为光催化剂进行分解水制氢和污染物降解的研究受到广泛关注,但如何采用简单易行的方法制备出高效、稳定且具有良好光热稳定性的催化剂是本领域的研究热点和难点。本文采用一种简单的水热法在g-C3N4表面引入更多的氨基,通过SEM、TEM等研究表面氨基化对g-C3N4表面形貌的影响,发现氨基化对其边缘位置的形貌影响较大;XRD、FTIR、UV-vis、XPS等分析表明表面氨基化反应对g-C3N4的主体结构没有破坏;光催化分解水制氢和罗丹明B降解性能表明,当采用浓度为15wt%的氨水处理时,g-C3N4对RhB的光催化降解性能也达到最优,90 min的降解率为98.12%,是g-C3N4 的1.55倍(63.28%),过高或过低的氨水浓度均不能使光催化性能达到最优;同时其分解水制氢速率性能最优(180.24 μmol·g−1·h−1),为g-C3N4的1.46倍(123.04 μmol·g−1·h−1);光电性能测试结果发现表面氨基化后光催化性能的增强机制可归结为,氨基是供电子基团,氨基含量的增加有利于光催化反应的发生,过度的氨基化导致离域三嗪环结构的破坏,光催化性能大幅降低。

     

  • 图  1  g-C3N4的SEM(a)和TEM图像(b); 采用浓度15wt%氨水处理的不同放大倍数g-C3N4的SEM图像((c)~(e))和TEM图像((f)~(h)); 采用浓度5wt% (i)、10wt% (j)、20wt% (k)和25wt% (l)氨水处理g-C3N4的SEM图像

    Figure  1.  SEM (a) and TEM (b) image of g-C3N4; (c)-(e) SEM images of g-C3N4 treated with 15wt% ammonium hydroxide; (f)-(h) TEM images of g-C3N4 treated with 15% ammonium hydroxide; SEM images of g-C3N4 treated with 5wt% (i), 10wt% (j), 20wt% (k) and 25wt% (l) ammoniumhydroxide

    图  2  g-C3N4和不同浓度氨水处理g-C3N4的FTIR图谱(a)、XRD图谱(b)、UV-vis图谱(c)、光致发光图谱(d)、N2吸附-脱附平衡曲线图(e)和孔径分布曲线图(f)

    Figure  2.  FTIR spectra (a), XRD patterns (b), UV-vis spectra (c), PL spectra (d), N2 adsorption-desorption equilibrium (e) and pore size distribution (f) curves of g-C3N4 and g-C3N4 treated with different concentration of ammonium hydroxide

    图  3  g-C3N4和g-C3N4(15%)的XPS的全图谱(a)、C1s图谱(b)、N1s图谱(c)和g-C3N4的结构示意图(d)

    Figure  3.  XPS spectra of full survey (a), C1s spectra (b), N1s spectra (c) and structure diagram (d) of g-C3N4 and g-C3N4(15%)

    图  4  g-C3N4和不同浓度氨水处理g-C3N4的降解RhB曲线(a)、三次循环降解RhB曲线(b)、分解水制氢性能曲线(c)和三次循环分解水制氢性能曲线(d)

    Figure  4.  RhB degradation curves (a), three times RhB degradation curves (b), hydrogen production curves (c) and three times hydrogen production curves (d) of g-C3N4 and g-C3N4 treated with different concentration of ammonium hydroxide

    η—Degradation rate of RhB

    图  5  g-C3N4和不同浓度氨水处理g-C3N4的光电流曲线(a)和瞬态荧光图谱(b)

    Figure  5.  Photocurrent curves (a) and transient fluorescence spectra (b) of g-C3N4 and g-C3N4 treated with different concentration of ammonium hydroxide

    图  6  氨水表面处理g-C3N4的活性位点示意图(a)和光催化反应增强机制(b)

    Figure  6.  Active site diagram (a) and enhance mechanism (b) of photocatalytic reaction of g-C3N4 treated with ammonium hydroxide

  • [1] 张梦凡, 李方, 张振民, 等. Ti4+掺杂制备花状SnO2/Sn3O4异质结微米球及其光催化性能[J]. 无机化学学报, 2021, 37(07): 1227-1236.

    ZHANG Mengfan, LI Fang, ZHANG Zhenmin, et al. Flower-like SnO2/Sn3O4 microspheres with heterojunction: Fabrication by Ti4+-doping and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(07): 1227-1236(in Chinese).
    [2] 孟祥磊. Co3(PO4)2/Ta3N5纳米花的控制合成及光催化解水析氢性能[J]. 材料科学, 2023, 13(4): 330-336.

    MENG Xianglei. Controllable synthesis and photocatalytic hydrogen evolution of Co3(PO4)2/Ta3N5 nanoflowers[J]. Materials Science, 2023, 13(4): 330-336(in Chinese).
    [3] 但智钢, 肖经浩, 姚旭. Bi2MoO6/WO3复合光催化材料的合成及其可见光催化性能[J]. 复合材料学报, 2022, 39(4): 1610-1616.

    DAN Zhigang, XIAO Jinghao, YAO Xu. Synthesis and visible light photocatalytic properties of Bi2MoO6/WO3 composite photocatalysts[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1610-1616(in Chinese).
    [4] WANG J, LIAN X, CHEN S. Effect of Bi2WO6/g-C3N4 composite on the combustion and catalytic decomposition of energetic materials: An efficient catalyst with g-C3N4 carrier[J]. Journal of Colloid and Interface Science, 2022, 610: 842- 853.
    [5] CHEN X, LIU Q, WU Q L, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Function Materials, 2016, 26: 1719-1728. doi: 10.1002/adfm.201505321
    [6] QI R. Iron single atoms anchored on carbon matrix/g-C3N4 hybrid supports by single-atom migration-trapping based on MOF pyrolysis[J]. Nanomaterials, 2022, 12: 1416-1422.
    [7] YANG G Q, CHEN T J, FENG B, et al. Improved corrosion resistance and biocompatibility of biodegradable magnesium alloy by coating graphite carbon nitride (g-C3N4)[J]. Journal of Alloys and Compounds, 2019, 770: 823-830. doi: 10.1016/j.jallcom.2018.08.180
    [8] LIU X, DAI L M. Carbon-based metal-free catalysts [J]. Nature Reviews Materials, 2016 1: 16064-16074.
    [9] ZHANG S C, CHEN J Q, FANG C, et al. Enhanced photocatalytic removal of antibiotics over graphitic carbon nitride induced by acetic acid post-treatment[J]. Colloids and Surfaces A, 2023, 64: 131165.
    [10] LIN Z Z, LIN L H, WANG X C, et al. Thermal nitridation of triazine motifs to heptazine-based carbon nitride frameworks for use in visible light photocatalysis [J]. Chinese Journal of Catalysis, 2015, 12(36): 2089-2094.
    [11] DAI X H, LIU H, DU W X, Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial [J]. Nano Research, 2023, 16: 7237–7247.
    [12] 陈涵. 氨水改性活性炭及其性能的研究[J]. 福建林业科技, 2012, 4(039): 12-15.

    CHEN Han. Study on the ammonia modification activated carbon and its properties[J]. Journal of Fujian Forestry Science and Technology, 2012, 4(039): 12-15(in Chinese).
    [13] 任建良, 刘应书, 李永玲, 等. 氨水改性活性炭及其吸附性能的实验研究[J]. 低温与特气, 2014, 2(32): 1007-7804.

    REN Jianliang, LIU Yingshu, LI Yongling, et al. Study on the ammonia modification activated carbon and its properties[J]. Low Temperature and Specialty Gases, 2014, 2(32): 1007-7804(in Chinese).
    [14] XU J S, SHALOM M, PIERSIMONI F, et al. Color-tunable photoluminescence and NIR electroluminescence in carbon nitride thin films and light-emitting diodes[J]. Advanced Optical Materials, 2015, 3: 913-917. doi: 10.1002/adom.201500019
    [15] CHENG R, WEN J Y, XIA J C, et al. Visible-light photocatalytic activity and photo-corrosion mechanism of Ag3PO4/g-C3N4/PVA composite film in degrading gaseous toluene[J]. Catalysis Today, 2019, 335: 565-573. doi: 10.1016/j.cattod.2019.03.046
    [16] GUO M Y, MA Y N, LIU Z Q, et al. Electron, hole and radical competition mechanism of layered porous g-C3N4 for hydrogen generation and organic pollutant degradation[J]. Journal of Catalysis, 2024, 430: 115332
    [17] ZUO S X, CHEN Y, LIU W J, et al. Polyaniline/g-C3N4 composites as novel media for anticorrosion coatings[J]. Journal of Coatings Technology and Research, 2017, 14: 1307-1314. doi: 10.1007/s11998-017-9916-7
    [18] YU W F, CAO R G, TIAN Y, et al. The effect of current density on CNx crystal grain growth in electrochemical deposition[J]. Chinese Physics Letters, 2011, 28: 028104. doi: 10.1088/0256-307X/28/2/028104
    [19] XIONG T, WANG H, ZHOU Y, et al. KCl-mediated dual electronic channels in layered g-C3N4 for enhanced visible light photocatalytic NO removal[J]. Nanoscale, 2018, 10: 8066-8074.
    [20] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27: 2150-2176.
    [21] LI Z, YAO Z J, HAIDRY A A, et al. Resistive-type hydrogen gas sensor based on TiO2: A review[J]. International Journal of Hydrogen Energy, 2018, 43: 21114-21132. doi: 10.1016/j.ijhydene.2018.09.051
    [22] WANG Y B, ZHAO X, CAO D, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol a by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. doi: 10.1016/j.apcatb.2017.03.079
    [23] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. doi: 10.1038/ncomms2152
  • 加载中
图(6)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  37
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-29
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回