留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒负载氧化石墨烯复合水泥基材料的微观结构及自修复性能

胡德鑫 单玉玺 王海亮 李东旭 张毅

胡德鑫, 单玉玺, 王海亮, 等. 颗粒负载氧化石墨烯复合水泥基材料的微观结构及自修复性能[J]. 复合材料学报, 2024, 41(6): 3084-3096. doi: 10.13801/j.cnki.fhclxb.20231025.002
引用本文: 胡德鑫, 单玉玺, 王海亮, 等. 颗粒负载氧化石墨烯复合水泥基材料的微观结构及自修复性能[J]. 复合材料学报, 2024, 41(6): 3084-3096. doi: 10.13801/j.cnki.fhclxb.20231025.002
HU Dexin, SHAN Yuxi, WANG Hailiang, et al. Microstructure and self-repairing performance of granular loaded graphene oxide composite cement-based materials[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3084-3096. doi: 10.13801/j.cnki.fhclxb.20231025.002
Citation: HU Dexin, SHAN Yuxi, WANG Hailiang, et al. Microstructure and self-repairing performance of granular loaded graphene oxide composite cement-based materials[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3084-3096. doi: 10.13801/j.cnki.fhclxb.20231025.002

颗粒负载氧化石墨烯复合水泥基材料的微观结构及自修复性能

doi: 10.13801/j.cnki.fhclxb.20231025.002
基金项目: 国家自然科学基金(51872137)
详细信息
    通讯作者:

    张毅,博士,副教授,硕士生导师,研究方向为水泥基复合材料 E-mail: zhy1987@ahut.edu.cn

  • 中图分类号: TU528.01;TB332

Microstructure and self-repairing performance of granular loaded graphene oxide composite cement-based materials

Funds: Natural Science Foundation of China (51872137)
  • 摘要: 以纳米SiO2、CaCO3粉体为氧化石墨烯(GO)载体得到SiO2-GO (SG),SiO2-CaCO3-GO (SCG),并将其掺入水泥基材料中,实现GO在水泥基材料中的分散,并研究其掺入对水泥基材料力学和自修复性能、水化产物和微观结构等方面的影响。研究表明,SG和SCG掺入进一步提高了水泥基材料的力学性能,SCG掺入水泥28天抗折和抗压强度较空白试样分别提高了7.3%和18.7%,高于掺入SiO2和SG试样。SCG掺入使水泥石具有良好的自修复性能,其中抗压强度修复率达到110.6%,28天抗渗性能修复率达到100%,裂缝面积测试表明SCG对于水泥基材料裂缝具有更为明显的修复效果。XRD分析显示SiO2、SG和SCG掺入均有助于促进水泥早期水化。TG分析表明,随着水化龄期的延长,SCG复合水泥试样中Ca(OH)2和SiO2之间的反应程度较高,与早期水化3天相比,SCG复合水泥基材料28天Ca(OH)2含量降低至14.90%。微观结构分析表明SCG与水泥石界面具有更好的相容性,能够促进水泥水化后期生成较多水化硅酸钙(C-S-H)凝胶,有效填充水泥石微观裂缝,SCG复合水泥基材料具有优良的自修复性能。

     

  • 图  1  氧化石墨烯(GO)的拉曼光谱

    Figure  1.  Raman spectrum of graphene oxide (GO)

    图  2  GO (a)、SiO2 (b)和制备SiO2-GO (SG) (c)、SiO2-CaCO3 (SC) (d)及SiO2-CaCO3-GO (SCG) (e)颗粒的SEM图像

    Figure  2.  SEM images of the GO (a), SiO2 (b) and prepared SG (c), SC (d), SCG particles (e)

    图  3  自制透水装置示意图

    Figure  3.  Schematic diagram of self-made water permeability device

    图  4  GO、SiO2、SG、SC、SCG的FTIR图谱

    Figure  4.  FTIR spectra of GO, SiO2, SG, SC and SCG

    图  5  GO、SiO2、SG、SC及 SCG的XRD图谱

    Figure  5.  XRD patterns of GO, SiO2, SG, SC and SCG

    图  6  水泥基材料试样各龄期力学性能

    Figure  6.  Mechanical properties of the cement specimens at each curing age

    图  7  修复前后硬化水泥石抗压强度

    Figure  7.  Compressive strength of the hardened cement before and after repairing

    图  8  空白和3wt%SiO2/CE、3wt%SG/CE、3wt% SCG/CE试样的渗水修复率

    Figure  8.  Water permeability repairing rate of blank, 3wt%SiO2/CE, 3wt%SG/CE and 3wt%SCG/CE

    图  9  空白试样修复前后照片:(a) 0天;(b) 3天;(c) 7天;(d) 14天;(e) 28天

    Figure  9.  Photos of blank samples before and after repairing: (a) 0 day; (b) 3 days; (c) 7 days; (d) 14 days; (e) 28 days

    C-S-H—Hydrate calcium silicate; S—Crack area

    图  10  3wt%SiO2/CE试样修复前后照片:(a) 0天;(b) 3天;(c) 7天;(d) 14天;(e) 28天

    Figure  10.  Photos of 3wt%SiO2/CE samples before and after repairing: (a) 0 day; (b) 3 days; (c) 7 days; (d) 14 days; (e) 28 days

    图  11  3wt%SG/CE试样修复前后照片:(a) 0天;(b) 3天;(c) 7天;(d) 14天;(e) 28天

    Figure  11.  Photos of 3wt%SG/CE samples before and after repairing: (a) 0 day; (b) 3 days; (c) 7 days; (d) 14 days; (e) 28 days

    图  12  3wt%SCG/CE试样修复前后照片:(a) 0天;(b) 3天;(c) 7天;(d) 14天;(e) 28天

    Figure  12.  Photos of 3wt%SCG/CE samples before and after repairing: (a) 0 day; (b) 3 days; (c) 7 days; (d) 14 days; (e) 28 days

    图  13  各水泥基材料试样裂缝修复率

    Figure  13.  Crack repairing rate of each cement-based material sample

    图  14  水泥基材料试样各龄期水化产物 XRD图谱:(a) 空白试样;(b) 3wt%SiO2/CE;(c) 3wt%SG/CE;(d) 3wt%SCG/CE

    Figure  14.  XRD patterns of the hydration products at each age: (a) Blank; (b) 3wt%SiO2/CE; (c) 3wt%SG/CE; (d) 3wt%SCG/CE

    图  15  空白、3wt%SiO2/CE、3wt%SG/CE及3wt%SCG/CE硬化水泥浆体TG-DTG曲线:(a) 3天;(b) 28天

    Figure  15.  TG-DTG curves of blank, 3wt%SiO2/CE, 3wt%SG/CE and 3wt%SCG/CE hardened cement paste: (a) 3 days; (b) 28 days

    图  16  不同水化龄期水泥浆体SEM-EDS微观结构:(a) 空白3天;(b) 空白28天;(c) 3wt%SiO2/CE 3天;(d) 3wt%SiO2/CE 28天;(e) 3wt%SG/CE 3天;(f) 3wt%SG/CE 28天;(g) 3wt%SCG/CE 3天;(h) 3wt%SCG/CE 28天

    Figure  16.  SEM-EDS images of the cement paste at different curing ages: (a) Blank 3 days; (b) Blank 28 days; (c) 3wt%SiO2/CE 3 days; (d) 3wt%SiO2/CE 28 days; (e) 3wt%SG/CE 3 days; (f) 3wt%SG/CE 28 days; (g) 3wt%SCG/CE 3 days; (h) 3wt%SCG/CE 28 days

    图  17  水泥基材料试样水化反应示意图:(a) 3wt%SiO2/CE;(b) 3wt%SG/CE;(c) 3wt%SCG/CE

    Figure  17.  Schematic diagram of hydration reaction of cement-based material samples: (a) 3wt%SiO2/CE; (b) 3wt%SG/CE; (c) 3wt%SCG/CE

    表  1  水泥的化学成分

    Table  1.   Chemical composition of cement

    CaO/wt% SiO2/wt% Al2O3/wt% SO3/wt% Fe2O3/wt% MgO/wt% TiO2/wt% P2O5/wt% K2O/wt% LOI/wt%
    64.51 20.20 4.83 2.25 3.75 2.67 0.375 0.071 0.80 0.54
    Note: LOI—Loss on ignition.
    下载: 导出CSV

    表  2  颗粒配比

    Table  2.   Proportion of the prepared particles

    Sample SiO2/wt% CaCO3/wt% GO/wt%
    SiO2 100 0 0
    SG 33.4 0 66.6
    SC 50 50 0
    SCG 16.7 16.7 66.6
    Notes: SG—SiO2-GO; SC—SiO2-CaCO3; SCG—SiO2-CaCO3-GO.
    下载: 导出CSV

    表  3  不同水泥基材料试样3天和28天龄期Ca(OH)2含量(wt%)

    Table  3.   Ca(OH)2 content of the cement-based material samples at 3 days and 28 days (wt%)

    Sample Blank 3wt%SiO2/CE 3wt%SG/CE 3wt%SCG/CE
    3 days 11.71 16.49 17.16 15.77
    28 days 17.14 17.55 17.63 14.90
    下载: 导出CSV
  • [1] 花素珍, 张家广, 高沛, 等. 增强再生骨料固载混菌的混凝土裂缝自修复性能[J]. 复合材料学报, 2023, 40(11): 6299-6310. doi: 10.13801/j.cnki.fhclxb.20230222.006

    HUA Suzhen, ZHANG Jiaguang, GAO Pei, et al. Self-healing of concrete cracks by immobilizing non-axenic bacteria with enhanced recycled aggregates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6299-6310(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230222.006
    [2] MAC M J, YIO M H N, DESBOIS G, et al. 3D imaging techniques for characterising microcracks in cement-based materials[J]. Cement and Concrete Research, 2021, 140: 106309. doi: 10.1016/j.cemconres.2020.106309
    [3] 张旋, 傅昌皓, 詹其伟, 等. 基于接触电阻的水泥基材料裂缝自修复效果定量表征方法[J]. 硅酸盐通报, 2023, 42(6): 1950-1959, 1979. doi: 10.16552/j.cnki.issn1001-1625.2023.06.015

    ZHANG Xuan, FU Changhao, ZHAN Qiwei, et al. Quantitative characterization method of crack self-healing effect of cement-based materials based on contact resistance theory[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 1950-1959, 1979(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2023.06.015
    [4] 马衍轩, 吴睿, 葛亚杰, 等. 粘土固化型微胶囊复合水泥基材料的设计与力学损伤自修复行为[J]. 复合材料学报, 2023, 40(9): 5288-5301.

    MA Yanxuan, WU Rui, GE Yajie, et al. Design and self-repair behavior of clay-cured microcapsule composite cementitious materials[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5288-5301(in Chinese).
    [5] SUN D, WENXU M, JIKUN M, et al. The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system[J]. Cement and Concrete Composites, 2021, 122: 104132. doi: 10.1016/j.cemconcomp.2021.104132
    [6] DU W, LIU Q, LIN R. Effects of toluene-di-isocyanate microcapsules on the frost resistance and self-repairing capability of concrete under freeze-thaw cycles[J]. Journal of Building Engineering, 2021, 44: 102880. doi: 10.1016/j.jobe.2021.102880
    [7] 朱康杰, 钱春香, 李敏, 等. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 1212-1216.

    ZHU Kangjie, QIAN Chunxiang, LI Min, et al. Effect of the size and dosage of microcapsule healing agent on the release rate of healing agent in microbial self-healing concrete[J]. Material Review, 2020, 34(Z2): 1212-1216(in Chinese).
    [8] FU C, ZHAN Q, ZHANG X, et al. Self-healing properties of cement-based materials in different matrix based on microbial mineralization coupled with bimetallic hydroxide[J]. Construction and Building Materials, 2023, 400: 132686. doi: 10.1016/j.conbuildmat.2023.132686
    [9] 黄浩良, 吴欣桐, 刘昊, 等. 固化海水离子裂缝自修复剂制备及其在硬化水泥浆体中的作用机理[J]. 硅酸盐学报, 2021, 49(8): 1619-1630.

    HUANG Haoliang, WU Xintong, LIU Hao, et al. Seawater-ion-bound self-healing agents and the working mechanism in cracked hardened cement paste[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1619-1630(in Chinese).
    [10] 常洪雷, 李晨聪, 王晓龙, 等. 复合矿物掺合料对砂浆自修复性能的影响[J]. 材料导报, 2023, 37(2): 62-68.

    CHANG Honglei, LI Chencong, WANG Xiaolong, et al. Effect of composite mineral admixtures on self-healing properties of mortar[J]. Materials Reports, 2023, 37(2): 62-68(in Chinese).
    [11] YU L, BAI S, GUAN X. Effect of graphene oxide on microstructure and micromechanical property of ultra-high performance concrete[J]. Cement and Concrete Composites, 2023, 138: 104964. doi: 10.1016/j.cemconcomp.2023.104964
    [12] FU Q, WANG Z, XUE Y, et al. Catalysis and regulation of graphene oxide on hydration properties and microstructure of cement-based materials[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(14): 5626-5643.
    [13] VANTADORI S, MAGNANI G, MANTOVANI L, et al. Effect of GO nanosheets on microstructure, mechanical and fracture properties of cement composites[J]. Construction and Building Materials, 2022, 361: 129368. doi: 10.1016/j.conbuildmat.2022.129368
    [14] 徐亦冬, 王瑶. 氧化石墨烯对水泥基复合材料徐变的调控机制[J]. 复合材料学报, 2022, 39(10): 4839-4846.

    XU Yidong, WANG Yao. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4839-4846(in Chinese).
    [15] SOUZA F B, SHAMSAEI E, SAGOE-CRENTSIL K, et al. Proposed mechanism for the enhanced microstructure of graphene oxide-portland cement composites[J]. Journal of Building Engineering, 2022, 54(5): 635-641.
    [16] LIU H, YU Y, LIU H, et al. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement[J]. Construction and Building Materials, 2018, 191: 311-319. doi: 10.1016/j.conbuildmat.2018.10.029
    [17] 陈妤, 李创创, 李国浩, 等. 氧化石墨烯改性水泥砂浆抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(5): 1539-1546.

    CHEN Yu, LI Chuangchuang, LI Guohao, et al. Chloride penetration resistance of cement mortar modified by graphene oxide[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1539-1546(in Chinese).
    [18] LI W, LI X, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of portland cement paste[J]. Construction and Building Materials, 2017, 136(4): 506-514.
    [19] WANG Q, LI S, PAN S, et al. Effect of graphene oxide on the hydration and microstructure of fly ash-cement system[J]. Construction and Building Materials, 2019, 198(2): 106-119.
    [20] GHAZIZADEH S, DUFFOUR P, SKIPPER N T, et al. An investigation into the colloidal stability of graphene oxide nano-layers in alite paste[J]. Cement and Concrete Research, 2017, 99(9): 116-128.
    [21] ZHAO L, GUO X L, LIU Y Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127(2): 255-269.
    [22] ZHAO L, GUO X L, GE C, et al. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites[J]. Construction and Building Materials, 2016, 113(6): 470-478.
    [23] LIN J, SHAMSAEI E, DE SOUZA F B, et al. Dispersion of graphene oxide-silica nanohybrids in alkaline environment for improving ordinary portland cement composites[J]. Cement and Concrete Composites, 2020, 106(2): 678-688.
    [24] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2022, 6(6): 35-46.

    WU Lei, LYU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structures and performances of cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 6(6): 35-46(in Chinese).
    [25] WU Z, KHAYAT K H, SHO C. Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete[J]. Cement and Concrete Research, 2017, 95: 247-256. doi: 10.1016/j.cemconres.2017.02.031
    [26] BAI S, GUAN X, LI G, et al. Effect of the early-age frost damage and nano-SiO2 modification on the properties of portland cement paste[J]. Construction and Building Materials, 2020, 262(10): 91-101.
    [27] DE OLIVEIRA T A, BRAGANCA M D O G P, PINKOSKI I M, et al. The effect of silica nanocapsules on self-healing concrete[J]. Construction and Building Materials, 2021, 300: 124010. doi: 10.1016/j.conbuildmat.2021.124010
    [28] 程子扬, 陈国夫, 屠艳平. 纳米CaCO3对粉煤灰再生骨料混凝土性能及微结构的影响[J]. 建筑材料学报, 2023, 26(3): 228-235. doi: 10.3969/j.issn.1007-9629.2023.03.002

    CHENG Ziyang, CHEN Guofu, TU Yanping. Effect of nano CaCO3 on properties and microstructure of fly ash recycled aggregate concrete[J]. Journal of Building Materials, 2023, 26(3): 228-235(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.03.002
    [29] KAKALI G, TSIVILIS S, AGGELI E, et al. Hydration products of C3A, C3S and portland cement in the presence of CaCO3[J]. Cement and Concrete Research, 2000, 30(7): 1073-1077. doi: 10.1016/S0008-8846(00)00292-1
    [30] SHEN D, KANG J, SHAO H, et al. Cracking failure behavior of high strength concrete containing nano-CaCO3 at early age[J]. Cement and Concrete Composites, 2023, 139: 104996. doi: 10.1016/j.cemconcomp.2023.104996
    [31] HOSAN A, SHAIKH F U A, SARKER P, et al. Nano- and micro-scale characterisation of interfacial transition zone (ITZ) of high volume slag and slag-fly ash blended concretes containing nano SiO2 and nano CaCO3[J]. Construction and Building Materials, 2021, 269: 121311. doi: 10.1016/j.conbuildmat.2020.121311
    [32] SHAIKH F U A, SUPIT S W M, BARBHUIYA S. Microstructure and nanoscaled characterization of HVFA cement paste containing nano-SiO2 and nano-CaCO3[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017063. doi: 10.1061/(ASCE)MT.1943-5533.0001898
    [33] 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Common portland cement: GB 175—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [34] 国家质量技术监督局. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cements—Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [35] WEI Z, GU K, CHEN B, et al. Comparison of sawdust bio-composites based on magnesium oxysulfate cement and ordinary portland cement[J]. Journal of Building Engineering, 2023, 63: 105514. doi: 10.1016/j.jobe.2022.105514
    [36] WU Z, KHAYAT K H, SHI C, et al. Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3[J]. Cement and Concrete Composites, 2021, 119: 103992. doi: 10.1016/j.cemconcomp.2021.103992
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  118
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-01
  • 录用日期:  2023-10-20
  • 网络出版日期:  2023-10-25
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回