留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制UHPC-RAC组合短柱轴压性能

秦朝刚 杜锦霖

秦朝刚, 杜锦霖. 预制UHPC-RAC组合短柱轴压性能[J]. 复合材料学报, 2024, 41(6): 3133-3146. doi: 10.13801/j.cnki.fhclxb.20231020.002
引用本文: 秦朝刚, 杜锦霖. 预制UHPC-RAC组合短柱轴压性能[J]. 复合材料学报, 2024, 41(6): 3133-3146. doi: 10.13801/j.cnki.fhclxb.20231020.002
QIN Chaogang, DU Jinlin. Axial compression performance of precast UHPC-RAC composite short column[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3133-3146. doi: 10.13801/j.cnki.fhclxb.20231020.002
Citation: QIN Chaogang, DU Jinlin. Axial compression performance of precast UHPC-RAC composite short column[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3133-3146. doi: 10.13801/j.cnki.fhclxb.20231020.002

预制UHPC-RAC组合短柱轴压性能

doi: 10.13801/j.cnki.fhclxb.20231020.002
基金项目: 中国博士后科学基金(2021T140587);陕西省自然科学基础研究计划项目(2023-JC-YB-326);长安大学中央高校基本科研业务费高新技术项目(300102282208)
详细信息
    通讯作者:

    秦朝刚,博士,副教授,硕士生导师,研究方向为低碳装配式混凝土结构体系与设计理论 E-mail:qinchaogang@chd.edu.cn

  • 中图分类号: TU375.3;TB332

Axial compression performance of precast UHPC-RAC composite short column

Funds: China Postdoctoral Science Foundation (2021T140587); Natural Science Foundation of Shaanxi Province (2023-JC-YB-326); Fundamental Research Funds for the Central Universities, CHD (300102282208)
  • 摘要: 将优势互补的超高性能混凝土(Ultra-high performance concrete,UHPC)和再生混凝土(Recycled aggregate concrete,RAC)组合设计为预制UHPC-RAC组合柱。以箍筋位置、UHPC壁厚和UHPC-RAC结合面粗糙度为参数,设计制作了7个预制UHPC-RAC组合短柱,通过轴压试验,分析了破坏形态、材料应变、荷载-位移曲线、承载力、泊松比和损伤等性能参数。结果表明:预制UHPC-RAC组合短柱改善了RAC短柱的破坏形态,因外围UHPC与箍筋形成组合作用对内部RAC约束效果的不同,分为强约束的剪切压溃破坏和弱约束的外壁UHPC劈裂破坏;配箍UHPC及其厚度的增加,增强了外围UHPC的约束作用,提高了预制UHPC-RAC组合短柱的轴压刚度和受压承载力,最大可提升93.3%和97.4%,降低了泊松比和损伤指数,其中泊松比的变化范围为0.26~0.18;UHPC-RAC结合面粗糙度对轴压性能呈现有利影响但差异较小。强约束效果保证了高性能材料力学性能的发挥,采用叠加原理,建立了可准确计算强约束预制UHPC-RAC组合柱的受压承载力计算公式,并提出了预制UHPC-RAC组合短柱的设计要求,提升材料的利用率。

     

  • 图  1  超高性能混凝土(UHPC)的主要成分

    Figure  1.  Main ingredients of ultra-high performance concrete (UHPC)

    图  2  UHPC的基本力学性能测试

    Figure  2.  Basic mechanical properties test of UHPC

    图  3  预制UHPC-RAC组合短柱的截面设计

    R—Radius of the UHPC core column

    Figure  3.  Section design of the precast UHPC-RAC composite short columns

    图  4  预制UHPC-RAC组合短柱的制作

    Figure  4.  Construction of the precast UHPC-RAC composite short columns

    图  5  预制UHPC-RAC组合短柱的加载与测试装置

    Figure  5.  Loading and testing device of the precast UHPC-RAC composite short columns

    图  6  钢筋应变片的布置

    Figure  6.  Arrangement of reinforcement strain gauges

    图  7  预制UHPC-RAC组合短柱的破坏形态

    Figure  7.  Failure pattern of the precast UHPC-RAC composite short columns

    图  8  预制UHPC-RAC组合短柱的典型破坏形态

    Figure  8.  Typical failure patterns of the precast UHPC-RAC composite short columns

    图  9  不同因素影响下预制UHPC-RAC组合短柱试件的荷载-位移曲线

    Figure  9.  Load-displacement curves of the precast UHPC-RAC composite short column specimens under the influence of different factors

    图  10  预制UHPC-RAC组合短柱的受压承载力

    Figure  10.  Compressive capacity of the precast UHPC-RAC composite short columns

    图  11  不同因素影响下钢筋和UHPC的应变

    Figure  11.  Strain of steel rebar and UHPC under different influence factors

    图  12  预制UHPC-RAC组合短柱的泊松比

    Figure  12.  Poisson' ratio of the precast UHPC-RAC composite short columns

    图  13  预制UHPC-RAC组合短柱的损伤

    Figure  13.  Damage of the precast UHPC-RAC composite short columns

    表  1  再生混凝土(RAC)、UHPC和钢筋的力学性能参数

    Table  1.   Mechanical properties of recycled aggregate concrete (RAC), UHPC and reinforcements

    Material Compressive strength/MPa Tensile strength/MPa Material Yielding strength/MPa Ultimate strength/MPa
    RAC 26.20 C6 400.5 568.4
    UHPC 101.78 9.30 C10 456.5 621.3
    Notes: C6—Steel bars with a diameter of 6 mm ; C10—Steel bars with a diameter of 10 mm.
    下载: 导出CSV

    表  2  预制UHPC-RAC组合短柱的设计参数

    Table  2.   Design parameters of the precast UHPC-RAC composite short columns

    Specimen ρv/% ρ/% Thickness/
    mm
    Roughness/
    mm
    R-C1 0.97 1.01
    U20¦S/L/R-C2 0.92 20
    U20¦S¦L/R-C3 0.90 20
    U20/S¦L/R-C4 0.87 20 0
    U15/S¦L/R-C5 0.83 15
    U30/S¦L/R-C6 0.96 30
    U20/S¦L/R-I1.6-C7 0.87 20 1.6
    U20/S¦L/R-I3.2-C8 0.87 20 3.2
    Notes: U—UHPC; R—RAC; S—Stirrup; L—Longitudinal bar; "/"—S or L locating in RAC or UHPC; "¦"—Interface between UHPC and RAC; I—Interface roughness; ρv—Volume-stirrup ratio; ρ—Longitudinal reinforcement ratio. For example, U20/S¦L/R-I3.2-C8 represents the eighth column whose UHPC thickness is 20 mm, the “S” stirrup locating in UHPC, “L” longitudinal bar locating in the RAC, and the bonding surface roughness is 3.2 mm; and U20¦S¦L/R-C3 represents the third column whose UHPC thickness is 20 mm, “S” stirrup locating in the interface between UHPC and RAC, “L” longitudinal bar locating in the RAC.
    下载: 导出CSV

    表  3  预制UHPC-RAC组合短柱的轴压性能参数

    Table  3.   Axial compression performance parameter of the precast UHPC-RAC composite short columns

    SpecimenNcr/kNδcr/mmNy/kNδy/mmNu/kNδu/mmK/(kN·mm–1)Si
    R-C11010.402.111305.362.781984.204.79437.011.00
    U20¦S/L/R-C21290.322.231960.043.432351.404.52553.781.19
    U20¦S¦L/R-C31463.402.152549.603.453024.604.46740.731.52
    U20/S¦L/R-C41747.842.402488.523.203370.404.74772.261.70
    U15/S¦L/R-C51645.402.112331.643.162692.204.21721.441.36
    U30/S¦L/R-C62668.983.163612.994.373779.524.94844.791.90
    U20/S¦L/R-I1.6-C71878.402.633430.564.403792.125.03774.961.91
    U20/S¦L/R-I3.2-C81682.021.963598.724.363916.364.83818.661.97
    Notes: Ncr—Cracking load; δcr—Cracking displacement; Ny—Yielding load; δy—Yielding displacement; Nu—Ultimate load; δu—Ultimate displacement; K—Compressive stiffness; Si—Coefficient of increase of axial compressive capacity.
    下载: 导出CSV

    表  4  预制UHPC-RAC组合短柱的受压承载力计算

    Table  4.   Compression capacity calculation of the precast UHPC-RAC composite short columns

    SpecimenNt/kNNc/kNNc/Nt
    R-C11984.201924.180.97
    U20¦S/L/R-C22351.403463.181.47
    U20¦S¦L/R-C33024.603463.181.15
    U20/S¦L/R-C43370.403463.181.03
    U15/S¦L/R-C52692.203138.191.17
    U30/S¦L/R-C63779.524067.821.08
    U20/S¦L/R-I1.6-C73792.123531.320.93
    U20/S¦L/R-I3.2-C83916.363598.930.92
    Notes: Nt—Test ultimate load of the precast UHPC-RAC composite columns; Nc—Calculated ultimate load of the precast UHPC-RAC composite columns.
    下载: 导出CSV
  • [1] 蔡伟光. 中国城乡建设领域碳排放系列研究报告(2022)[R]. 重庆: 中国建筑节能协会建筑能耗与碳排放数据专委会, 2022.

    CAI Weiguang. Series of research reports on carbon emissions in Chinese urban and rural construction sector (2022)[R]. Chongqing: Special Committee on Building Energy Consumption and Carbon Emissions Data of China Building Energy Efficiency Association, 2022(in Chinese).
    [2] 丁超, 贾子杰, 王振华, 等. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012

    DING Chao, JIA Zijie, WANG Zhenhua, et al. UHPC carbon emission control potential based on life cycle assessment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1242-1251(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012
    [3] 王佃超, 肖建庄, 夏冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11): 1610-1619. doi: 10.11908/j.issn.0253-374x.21366

    WANG Dianchao, XIAO Jianzhuang, XIA Bing, et al. Carbonization modification of recycled aggregate and its contribution to carbon reduction[J]. Journal of Tongji University (Natural Science Edition), 2022, 50(11): 1610-1619(in Chinese). doi: 10.11908/j.issn.0253-374x.21366
    [4] XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials, 2012, 31: 364-383. doi: 10.1016/j.conbuildmat.2011.12.074
    [5] 中华人民共和国住房和城乡建设部. 再生混凝土结构技术标准: JGJ/T 443—2018[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for recycled concrete structures: JGJ/T 443—2018[S]. Beijing: China Architecture & Industry Press, 2018(in Chinese).
    [6] ABOUKIFA M, MOUSTAFA M A. Reinforcement detailing effects on axial behavior of full-scale UHPC columns[J]. Journal of Building Engineering, 2022, 49: 1-18. doi: 10.1016/j.jobe.2022.104064
    [7] XIE J, FU Q H, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials, 2019, 204: 643-658. doi: 10.1016/j.conbuildmat.2019.01.220
    [8] 邓明科, 李睿喆, 张阳玺. HDC与RPC加固RC柱轴心受压性能试验研究[J]. 工程力学, 2020, 37(9): 74-83. doi: 10.6052/j.issn.1000-4750.2019.01.0045

    DENG Mingke, LI Ruizhe, ZHANG Yangxi. Experimental study on axial compression performance of reinforced concrete columns strengthened with high-ductility cementitious composites and reactive powder concrete[J]. Engineering Mechanics, 2020, 37(9): 74-83(in Chinese). doi: 10.6052/j.issn.1000-4750.2019.01.0045
    [9] 成煜, 谢剑, 于敬海. 二次受力下UHPC加固钢筋混凝土柱轴压性能试验研究[J]. 硅酸盐通报, 2019, 38(7): 2295-2301. doi: 10.16552/j.cnki.issn1001-1625.2019.07.049

    CHENG Yu, XIE Jian, YU Jinghai. Experimental study on axial compressive performance of reinforced concrete columns strengthened with ultra-high performance concrete under biaxial loading[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2295-2301(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2019.07.049
    [10] 王勃, 周家宇. UHPC加固钢筋混凝土柱轴压承载力研究[J]. 吉林建筑大学学报, 2022, 39(3): 1-8. doi: 10.3969/j.issn.1009-0185.2022.03.001

    WANG Bo, ZHOU Jiayu. Research on axial compressive bearing capacity of reinforced concrete columns strengthened with UHPC[J]. Journal of Jilin Jianzhu University, 2022, 39(3): 1-8(in Chinese). doi: 10.3969/j.issn.1009-0185.2022.03.001
    [11] 曹西, 缪昌铅, 潘海涛. 基于碳排放模型的装配式混凝土与现浇建筑碳排放比较分析与研究[J]. 建筑结构, 2021, 51(S2): 1233-1237.

    CAO Xi, MIAO Changqian, PAN Haitao. Comparative analysis and research on carbon emissions between prefabricated concrete and cast-in-place construction based on carbon emission models[J]. Building Structure, 2021, 51(S2): 1233-1237(in Chinese).
    [12] 黄卿维, 王思睿, 黄伟, 等. RU-NC组合短柱轴压受力性能研究[J]. 湖南大学学报(自然科学版), 2022, 49(11): 137-149.

    HUANG Qingwei, WANG Sirui, HUANG Wei, et al. Study on axial compressive performance of RU-NC composite short columns[J]. Journal of Hunan University (Natural Sciences Edition), 2022, 49(11): 137-149(in Chinese).
    [13] 杨医博, 杨凯越, 吴志浩, 等. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究[J]. 材料导报, 2017, 31(23): 120-124, 137. doi: 10.11896/j.issn.1005-023X.2017.023.017

    YANG Yibo, YANG Kaiyue, WU Zhihao, et al. Experimental study on the influence of ultra-high performance concrete used as permanent formwork for reinforcement on the mechanical properties of short columns[J]. Materials Review, 2017, 31(23): 120-124, 137(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.017
    [14] 单波, 刘志, 肖岩, 等. RPC预制管混凝土组合柱组合效应试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(3): 88-96. doi: 10.16339/j.cnki.hdxbzkb.2017.03.011

    SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental study on composite effect of RPC prefabricated concrete composite columns[J]. Journal of Hunan University (Natural Sciences Edition), 2017, 44(3): 88-96(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2017.03.011
    [15] 单波, 罗校炳, 肖岩, 等. 大尺寸RPC管-混凝土组合短柱轴压性能研究[J]. 湘潭大学学报(自然科学版), 2019, 41(2): 85-93.

    SHAN Bo, LUO Xiaobing, XIAO Yan, et al. Large-size RPC pipe-concrete composite short column axial compression performance study[J]. Journal of Xiangtan University (Natural Science Edition), 2019, 41(2): 85-93(in Chinese).
    [16] 任志刚, 张成前, 李旗, 等. UHPC模板-钢管混凝土叠合短柱轴压性能研究[J]. 武汉理工大学学报, 2022, 44(9): 49-57.

    REN Zhigang, ZHANG Chengqian, LI Qi, et al. Research on axial compression performance of UHPC formwork-steel tube concrete composite short columns[J]. Journal of Wuhan University of Technology, 2022, 44(9): 49-57(in Chinese).
    [17] 何肖云峰. UHPC-NSC圆形截面组合短柱轴压力学性能试验研究[D]. 成都: 西南交通大学, 2021.

    HE Xiaoyunfeng. Experimental study on axial compressive mechanical properties of UHPC-NSC composite short columns with circular section[D]. Chengdu: Southwest Jiaotong University, 2021(in Chinese).
    [18] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. doi: 10.3969/j.issn.1671-1637.2018.01.002

    CHEN Baochun, LI Cong, HUANG Wei, et al. Reviw of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28(in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.002
    [19] GUO H, SHI C J, GUAN X M, et al. Durability of recycled aggregate concrete: A review[J]. Cement and Concrete Composites, 2018, 89: 251-259. doi: 10.1016/j.cemconcomp.2018.03.008
    [20] 秦朝刚, 赵文浩, 杜锦霖, 等. 一种混凝土组合预制柱:中国专利,ZL 2021 2 28268736 [P]. 2022-03-11.

    QIN Chaogang, ZHAO Wenhao, DU Jinlin, et al. The utility model relates to a concrete composite precast column: China patent, ZL202122826873.6 [P]. 2022-03-11(in Chinese).
    [21] XUE W C, HU X Y, SONG J Z. Experimental study on seismic behavior of precast concrete beam-column joints using UHPC-based connections[J]. Structures, 2021, 34: 4867-4881. doi: 10.1016/j.istruc.2021.10.067
    [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [23] 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CBMF 37—2018、T/CCPA 7—2018[S]. 北京: 中国建筑工业出版社, 2019.

    China Building Materials Federation. Fundamental characteristics and test methods of ultra-high performance concrete: T/CBMF 37—2018, T/CCPA 7—2018[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [24] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料:GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [25] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Industry Press, 2010(in Chinese).
    [26] 中华人民共和国住房和城乡建设部. 钢纤维混凝土结构设计标准: JGJ/T 465—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel fiber reinforced concrete structures: JGJ/T 465—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [27] 张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7): 81-89. doi: 10.15951/j.tmgcxb.2021.07.006

    ZHANG Yang, WU Jie, SHAO Xudong, et al. Experimental study on shear performance of interface between ultra-high performance concrete and ordinary concrete[J]. China Civil Engineering Journal, 2021, 54(7): 81-89(in Chinese). doi: 10.15951/j.tmgcxb.2021.07.006
    [28] GARBACZ A, COURARD L, KOSTANA K. Characterization of concrete surface roughness and its relation to adhesion in repair systems[J]. Materials Characterization, 2006, 56(45): 281-289.
    [29] 中华人民共和国住房和城乡建设部. 装配式混凝土结构技术规程: JGJ 1—2014[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for precast concrete structures: JGJ 1—2014[S]. Beijing: China Architecture & Building Press, 2014(in Chinese).
    [30] 秦鹏, 周昱, 李开琼, 等. CFRP约束圆钢管高强混凝土短柱轴压试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(5): 47-54.

    QING Peng, ZHOU Yu, LI Kaiqiong, et al. Experimental study on axial compression test of high-strength concrete short columns confined with CFRP confined circular steel tubes[J]. Journal of Hunan University (Natural Sciences Edition) 2021, 48(5): 47-54(in Chinese).
    [31] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10): 2428-2438. doi: 10.13801/j.cnki.fhclxb.20200219.003

    LIU Xia, LI Feng, SHE Yinpeng. Experimental study on axial compression test of coral sand concrete columns reinforced with basalt fiber-reinforced polymer bars[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2428-2438(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200219.003
    [32] 秦朝刚, 吴涛, 刘伯权, 等. 预制UHPC-RAC组合梁受弯性能试验与理论计算[J]. 复合材料学报, 2024, 41(3): 1420-1435.

    QIN Chaogang, WU Tao, LIU Boquan, et al. Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1420-1435(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  193
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-10-01
  • 录用日期:  2023-10-16
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回