留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制键槽式UHPC与后浇混凝土界面粘结抗剪性能

王鹏刚 赵明海 田砾 潘崇根 陈春雷 傅宁

王鹏刚, 赵明海, 田砾, 等. 预制键槽式UHPC与后浇混凝土界面粘结抗剪性能[J]. 复合材料学报, 2024, 41(5): 2634-2645. doi: 10.13801/j.cnki.fhclxb.20230926.001
引用本文: 王鹏刚, 赵明海, 田砾, 等. 预制键槽式UHPC与后浇混凝土界面粘结抗剪性能[J]. 复合材料学报, 2024, 41(5): 2634-2645. doi: 10.13801/j.cnki.fhclxb.20230926.001
WANG Penggang, ZHAO Minghai, TIAN Li, et al. Interface shear resistance of precast keyway UHPC and post-cast normal concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2634-2645. doi: 10.13801/j.cnki.fhclxb.20230926.001
Citation: WANG Penggang, ZHAO Minghai, TIAN Li, et al. Interface shear resistance of precast keyway UHPC and post-cast normal concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2634-2645. doi: 10.13801/j.cnki.fhclxb.20230926.001

预制键槽式UHPC与后浇混凝土界面粘结抗剪性能

doi: 10.13801/j.cnki.fhclxb.20230926.001
基金项目: 宁波市科技创新2025重大专项 (2020Z035)
详细信息
    通讯作者:

    王鹏刚,博士,教授,研究方向为混凝土结构耐久性 E-mail:wangpenggang007@163.com

  • 中图分类号: TU528.1;TB332

Interface shear resistance of precast keyway UHPC and post-cast normal concrete

Funds: Ningbo 2025 Science and Technology Major Project (2020Z035)
  • 摘要: 永久性模板的使用可实现混凝土结构的快速施工,缩短工期,提高整体结构的承载能力和耐久性能。其界面粘结抗剪性能是确保永久性模板与混凝土协同工作的关键。本文设计并制作了3组不同强度混凝土试件和10组键槽式超高性能混凝土(UHPC)-普通混凝土(NC)复合试件,通过单面剪切试验和理论分析,系统研究了键槽密度、键槽间距、混凝土强度、养护条件等对键槽式UHPC-NC结合面抗剪性能的影响。结果表明:整体试件的裂缝与加载中心轴线呈一定角度,UHPC-NC结合面破坏发生于普通混凝土一侧。UHPC-NC荷载-滑移曲线细分为4个近似线性阶段,其极限滑移量均在0.9 mm以内。复合试件UHPC-NC的粘结面总剪切强度由粘结面接触摩擦力、水泥石-骨料相互作用、键槽-骨料互锁机制、剪切膨胀提供。合理的UHPC-NC键槽界面在提高界面粘结抗剪强度的同时,可有效提高界面相对位移。在60℃蒸汽养护条件下,水泥石-骨料界面及UHPC-混凝土界面作用减弱。建立了键槽式UHPC-后浇NC界面抗剪承载力修正公式,其计算值与试验值具有较高的吻合度,大多数结果落在90%置信区间,置信区间之外的点,受试件养护龄期的影响。因此,要准确计算键槽式UHPC-NC复合试件抗剪强度还需要考虑养护龄期的影响,引入养护龄期修正参数。

     

  • 图  1  UHPC永久性模板的键槽参数

    Figure  1.  Keyway parameters of UHPC permanent template

    图  2  单面剪切试件钢模具示意图

    Figure  2.  Schematic diagram of steel mold of single-side shear specimen

    图  3  UHPC-NC试件单面剪切试验示意图

    Figure  3.  Schematic diagram of UHPC-NC single-side shear test

    图  4  NC试件剪切破坏形态:混凝土强度等级的影响

    Figure  4.  Shear failure pattern of NC specimen: Effect of concrete strength

    图  5  UHPC-NC试件剪切破坏形态:键槽参数((a)~(c))和NC强度((c)~(e))的影响

    Figure  5.  Shear failure pattern of UHPC-NC specimen: Effects of keyway parameter ((a)-(c)) and NC strength ((c)-(e))

    图  6  UHPC-NC试件剪切破坏形态:养护龄期((a), (b))和养护制度(((a), (c))、((b), (d)))的影响

    Figure  6.  Shear failure pattern of UHPC-NC specimen: Effects of curing time ((a), (b)) and curing regime (((a), (c)), ((b), (d)))

    图  7  NC、UHPC-NC试件荷载-位移曲线:混凝土强度的影响

    Figure  7.  Load-displacement curves of NC specimen and UHPC-NC specimen: Effect of concrete strength

    图  8  UHPC-NC试件荷载-位移曲线:键槽类型的影响

    Figure  8.  Load-displacement curves of UHPC-NC specimen:Effect of keyway

    图  9  UHPC-NC试件荷载-位移曲线:养护条件的影响

    Figure  9.  Load-displacement curves of UHPC-NC specimen:Effect of curing conditions

    图  10  极限荷载下NC试件应变云图:混凝土强度的影响

    Figure  10.  Strain distribution of NC specimen under ultimate load: Effect of concrete strength

    图  11  极限荷载下UHPC-NC试件应变云图:键槽参数的影响

    Figure  11.  Strain distribution of UHPC-NC specimen under ultimate load: Effect of keyway

    图  12  极限荷载下UHPC-NC试件应变云图:后浇混凝土强度的影响

    Figure  12.  Strain distribution of UHPC-NC specimen under ultimate load: Effect of post-cast concrete strength

    图  13  UHPC-NC试件粘结面抗剪强度计算值与试验值

    Figure  13.  Comparison of calculated values and experimental values for shear strength of UHPC-NC specimen

    表  1  超高性能混凝土(UHPC)配合比 (kg/m3)

    Table  1.   Mix proportion of ultra-high performance concrete (UHPC) (kg/m3)

    Cement Silica fume Fly ash Quartz sand Steel fiber Superplasticizer Water
    680 144 200 1060 156 30 180
    下载: 导出CSV

    表  2  普通混凝土(NC)配合比和材料性能(kg/m3)

    Table  2.   Mix proportion and mechanical property of normal concrete (NC) (kg/m3)

    Cement Sand Aggregate
    (10-20 mm)
    Aggregate
    (5-10 mm)
    Fly ash Slag Water Super-
    plasticizer
    28 d compressive
    strength/MPa
    28 d elastic
    modulus/GPa
    C30 214 704 879 211 71 71 178 5.7 34.6 30.96
    C40 279 645 878 207 79 79 175 7.0 44.6 33.69
    C50 325 522 922 221 50 125 170 8.0 53.3 35.76
    下载: 导出CSV

    表  3  剪切试验试件编号

    Table  3.   Number of specimen for shear test

    Specimen type Strength of post-cast concrete Type of the interface Curing time/d Influence parameter
    N3 C30 Monolithic 7
    N4 C40 Monolithic 7
    N5 C50 Monolithic 7
    UN5-B-7 C50 B 7 Curing time
    UN5-B-Z7 C50 B 1+6 Curing regime
    UN5-B-14 C50 B 14 Curing time
    UN5-B-Z14 C50 B 1+13 Curing regime
    UN5-A-28 C50 A 28 Type of keyway
    UN5-B-28 C50 B 28 Type of keyway
    UN5-C-28 C50 C 28 Type of keyway
    UN3-B-28 C30 B 28 Strength of concrete
    UN4-B-28 C40 B 28 Strength of concrete
    UN5-B-Z28 C50 B 1+27 Curing regime
    下载: 导出CSV

    表  4  NC试件与UHPC-NC试件的剪切性能参数

    Table  4.   Shear parameters of NC specimen and UHPC-NC specimen

    Specimen type Ultimate
    load Pu/kN
    Nominal shear
    strength τ/MPa
    Vertical limit
    displacement S/mm
    Shear stiffness
    K/(kN·mm−1)
    N3 27.36 2.74 0.185 136.80
    N4 32.02 3.20 0.370 68.96
    N5 43.08 4.31 0.354 147.10
    UN5-B-7 45.51 4.55 0.545 113.98
    UN5-BZ-7 45.20 4.53 0.290 211.26
    UN5-B-14 60.48 6.05 0.410 134.40
    UN5-BZ-14 38.96 3.89 0.400 97.40
    UN5-A-28 46.94 4.69 0.684 66.78
    UN5-B-28 74.50 7.45 0.985 127.36
    UN5-C-28 62.59 6.26 0.800 58.42
    UN3-B-28 47.00 4.70 0.540 86.58
    UN4-B-28 60.15 6.01 0.650 113.80
    UN5-BZ-28 53.99 5.40 0.660 85.90
    下载: 导出CSV

    表  5  UHPC-NC试件粘结面抗剪强度计算值与试验值(MPa)

    Table  5.   Calculated values and experimental values for shear strength of UHPC-NC specimen (MPa)

    Test value Mohr Coulomb theory[15-16] Eurocode 2[31] AASHTO LRFD[32] ACI 318[33] Fib model code[34]
    N3 2.74 3.84 1.025 0.3 0.866 0.4
    N4 3.20 4.96 1.325 0.3 0.983 0.4
    N5 4.31 5.93 1.583 0.3 1.075 0.4
    UN5-B-7 4.55 5.93 1.583 0.3 2.150 0.4
    UN5-BZ-7 4.53 5.93 1.583 0.3 2.150 0.4
    UN5-B-14 6.05 5.93 1.583 0.3 2.150 0.4
    UN5-BZ-14 3.89 5.93 1.583 0.3 2.150 0.4
    UN5-A-28 4.69 5.93 1.583 0.3 2.150 0.4
    UN5-B-28 7.45 5.93 1.583 0.3 2.150 0.4
    UN5-C-28 6.26 5.93 1.583 0.3 2.040 0.4
    UN3-B-28 4.70 3.84 1.025 0.3 1.732 0.4
    UN4-B-28 6.01 4.96 1.325 0.3 1.966 0.4
    UN5-BZ-28 5.40 5.93 1.583 0.3 2.150 0.4
    下载: 导出CSV

    表  6  UHPC-NC试件粘结面抗剪强度(τs)修正模型计算值与试验值(MPa)

    Table  6.   Calculated values of corrected model and experimental values for shear strength (τs) of UHPC-NC specimens (MPa)

    Test
    value
    Ref. [17] Ref. [22] Ref. [23] Ref. [29] Calculated model τs
    (Test value (Calculated value) )
    UN5-B-7 4.55 6.457 (0.705) 7.593 (0.599) 4.351 (1.046) 8.594 (0.529) 5.293 (0.860)
    UN5-BZ-7 4.53 6.457 (0.702) 7.593 (0.597) 4.351 (1.041) 8.594 (0.527) 5.293 (0.856)
    UN5-B-14 6.05 6.457 (0.937) 7.593 (0.797) 4.351 (1.390) 8.594 (0.704) 5.293 (1.143)
    UN5-BZ-14 3.89 6.457 (0.602) 7.593 (0.512) 4.351 (0.894) 8.594 (0.453) 5.293 (0.735)
    UN5-A-28 4.69 6.457 (0.726) 7.593 (0.618) 4.351 (1.078) 8.594 (0.546) 5.293 (0.886)
    UN5-B-28 7.45 6.457 (1.154) 7.593 (0.981) 4.351 (1.712) 8.594 (0.867) 5.293 (1.407)
    UN5-C-28 6.26 6.383 (0.981) 7.593 (0.824) 3.916 (1.599) 8.140 (0.769) 6.223 (1.006)
    UN3-B-28 4.70 3.374 (1.394) 6.117 (0.768) 4.351 (1.080) 6.777 (0.694) 5.094 (0.923)
    UN4-B-28 6.01 4.462 (1.347) 6.945 (0.868) 4.351 (1.381) 7.792 (0.771) 5.160 (1.165)
    UN5-BZ-28 5.40 6.457 (0.836) 7.593 (0.711) 4.351 (1.241) 8.594 (0.628) 5.293 (1.020)
    下载: 导出CSV
  • [1] SHI C J, WU Z M, XIAO J F, et al. A review on ultra high performance concrete: Part I. Raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. doi: 10.1016/j.conbuildmat.2015.10.088
    [2] SAFDAR M, MATSUMOTO T, KAKUMA K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157: 448-460. doi: 10.1016/j.compstruct.2016.09.010
    [3] ZHANG Y, ZHANG C Y, ZHU Y P, et al. An experimental study: Various influence factors affecting interfacial shear performance of UHPC-NSC[J]. Construction and Building Materials, 2020, 236: 117480. doi: 10.1016/j.conbuildmat.2019.117480
    [4] 张雷顺, 闫国新, 张晓磊. 新老混凝土切槽法结合面抗剪性能试验研究分析[J]. 工业建筑, 2007, 37(6): 101-103, 115. doi: 10.3321/j.issn:1000-8993.2007.06.026

    ZHANG Leishun, YAN Guoxin, ZHANG Xiaolei. Experimental study and analysis on shearing property of interficial bonding of new to old concrete by cutting groove[J]. Industrial Construction, 2007, 37(6): 101-103, 115(in Chinese). doi: 10.3321/j.issn:1000-8993.2007.06.026
    [5] DE LA VARGA I, HABER Z B, GRAYBEAL B A. Enhancing shrinkage properties and bond performance of prefabricated bridge deck connection grouts: Material and component testing[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018053. doi: 10.1061/(ASCE)MT.1943-5533.0002235
    [6] MOMAYEZ A, EHSANI M R, RAMEZANIANPOUR A A, et al. Comparison of methods for evaluating bond strength between concrete substrate and repair materials[J]. Cement and Concrete Research, 2005, 35(4): 748-757. doi: 10.1016/j.cemconres.2004.05.027
    [7] TAYEH B A, ABU BAKAR B H, MEGAT JOHARI M A, et al. Evaluation of bond strength between normal concrete substrate and ultra high performance fiber concrete as a repair material[J]. Procedia Engineering, 2013, 54: 554-563. doi: 10.1016/j.proeng.2013.03.050
    [8] 张雷顺, 闫国新, 张晓磊, 等. 沟槽式新老混凝土粘结面抗剪强度试验研究[J]. 郑州大学学报(工学版), 2006, 27(2): 24-28.

    ZHANG Leishun, YAN Guoxin, ZHANG Xiaolei, et al. Experimental research on shear strength of interfacial bonding of new and old concrete by cutting groove[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(2): 24-28(in Chinese).
    [9] YANG J, XIA J R, CHENG C S, et al. Research on the bonding performance of UHPC-NC interfaces with different sizes of grooves[J]. Frontiers in Materials, 2022, 9: 859717. doi: 10.3389/fmats.2022.859717
    [10] WANG Z, NIE X, FAN J S, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams[J]. Construction and Building Materials, 2019, 195: 323-339. doi: 10.1016/j.conbuildmat.2018.11.057
    [11] BIRKELANDD P W, BIRKELAND H W. Connections in precast concrete construction[J]. ACI Structural Journal, 1966, 63(3): 345-368.
    [12] JANG H O, LEE H S, CHO K H, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 152: 16-23. doi: 10.1016/j.conbuildmat.2017.06.156
    [13] JIANG H B, DONG X T, FANG Z C, et al. Experimental study on shear behavior of a UHPC connection between adjacent precast prestressed concrete voided beams[J]. Journal of Bridge Engineering, 2020, 25(12): 04020106. doi: 10.1061/(ASCE)BE.1943-5592.0001644
    [14] JIANG H B, SHAO T F, FANG Z C, et al. Shear-friction behavior of grooved construction joints between a precast UHPC girder and a cast-in-place concrete slab[J]. Engineering Structures, 2021, 228: 111610. doi: 10.1016/j.engstruct.2020.111610
    [15] 张阳, 王兴旺. UHPC加固RC结构交界面抗剪性能试验研究[J]. 中外公路, 2017, 37(2): 105-111. doi: 10.14048/j.issn.1671-2579.2017.02.024

    ZHANG Yang, WANG Xingwang. Experimental study on shear performance of RC structures reinforced by UHPC[J]. Journal of China & Foreign Highway, 2017, 37(2): 105-111(in Chinese). doi: 10.14048/j.issn.1671-2579.2017.02.024
    [16] SANTOS P M D, JÚLIO E N B S. Development of a laser roughness analyser to predict in situ the bond strength of concrete-to-concrete interfaces[J]. Magazine of Concrete Research, 2008, 60(5): 329-337. doi: 10.1680/macr.2007.00024
    [17] DU C Q, LIU X F, LIU Y Y, et al. Prediction of the interface shear strength between ultra-high-performance concrete and normal concrete using artificial neural networks[J]. Materials (Basel), 2021, 14(19): 5707. doi: 10.3390/ma14195707
    [18] MATTOCK A H, HAWKINS N M. Shear transfer in reinforced concrete—Recent research[J]. PCI Journal, 1972, 17(2): 55-75. doi: 10.15554/pcij.03011972.55.75
    [19] MOHAMAD M E, IBRAHIM I S, ABDULLAH R, et al. Friction and cohesion coefficients of composite concrete-to-concrete bond[J]. Cement and Concrete Composites, 2015, 56: 1-14. doi: 10.1016/j.cemconcomp.2014.10.003
    [20] HARRIS D K, SARKAR J, AHLBORN T T M. Characterization of interface bond of ultra-high-performance concrete bridge deck overlays[J]. Transportation Research Record, 2011, 2240: 40-49. doi: 10.3141/2240-07
    [21] HUSSEIN H H, WALSH K K, SARGAND S M, et al. Interfacial properties of ultrahigh-performance concrete and high-strength concrete bridge connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015208. doi: 10.1061/(ASCE)MT.1943-5533.0001456
    [22] 王景全, 胡玉庆, 刘桐旭, 等. 超高性能混凝土大键齿干接缝受剪性能与承载力计算方法[J]. 建筑结构学报, 2021, 42(10): 177-185. doi: 10.14006/j.jzjgxb.2020.C318

    WANG Jingquan, HU Yuqing, LIU Tongxu, et al. Shear performance and bearing capacity calculation method for UHPC dry joints with large-keys[J]. Journal of Building Structures, 2021, 42(10): 177-185(in Chinese). doi: 10.14006/j.jzjgxb.2020.C318
    [23] ZHANG Y, ZHU P, WANG X W, et al. Shear properties of the interface between ultra-high performance concrete and normal strength concrete[J]. Construction and Building Materials, 2020, 248: 118455. doi: 10.1016/j.conbuildmat.2020.118455
    [24] ZHU Y P, ZHANG Y, HUSSEIN H H, et al. Numerical modeling for damaged reinforced concrete slab strengthened by ultra-high performance concrete (UHPC) layer[J]. Engineering Structures, 2020, 209: 110031. doi: 10.1016/j.engstruct.2019.110031
    [25] ZHU Y P, ZHANG Y, LI X L, et al. Finite element model to predict structural response of predamaged RC beams reinforced by toughness-improved UHPC under unloading status[J]. Engineering Structures, 2021, 235: 112019. doi: 10.1016/j.engstruct.2021.112019
    [26] SANTOS P M D, JÚLIO E N B S. A state-of-the-art review on shear-friction[J]. Engineering Structures, 2012, 45: 435-448. doi: 10.1016/j.engstruct.2012.06.036
    [27] 中国工程建设标准化协会. 超高性能混凝土(UHPC)技术要求: T/CECS 10107—2020[S]. 北京: 中国标准出版社, 2020.

    China Engineering Construction Standardization Association. Technical requirements for ultra high performance concrete: T/CECS 10107—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [28] 中华人民共和国住房与城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China State Engineering and Construction Press, 2011(in Chinese).
    [29] 王德弘, 沈彤, 鞠彦忠, 等. 后浇普通混凝土与预制UHPC的粘结受剪性能研究[J]. 建筑结构学报, 2020, 41(S2): 411-419. doi: 10.14006/j.jzjgxb.2020.S2.0046

    WANG Dehong, SHEN Tong, JU Yanzhong, et al. Study on shear bond behavior of post-cast normal concrete and precast UHPC[J]. Journal of Building Structures, 2020, 41(S2): 411-419(in Chinese). doi: 10.14006/j.jzjgxb.2020.S2.0046
    [30] 王鹏刚, 付华, 郭腾飞, 等. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24): 86-93.

    WANG Penggang, FU Hua, GUO Tengfei, et al. Deformation behavior and cracking risk assessment of steam-cured concrete[J]. Materials Reports, 2022, 36(24): 86-93(in Chinese).
    [31] JOHNSON R P, ANDERSON D. Eurocode 2. General rules and rules for buildings[C]//The European Union Per Regulation. Brussels: European Committee for Standardization, 2004: 1-99 .
    [32] SWARTZ B D, SCANLON A, SCHOKKER A J. AASHTO LRFD bridge design specifications provisions for loss of prestress[J]. PCI Journal, 2012, 57(4): 108-132. doi: 10.15554/pcij.09012012.108.132
    [33] JACK P M, SANTANA G. Commentary on building code requirements for structural concrete (ACI 318r-14): An ACI report [R]. Washington: American Concrete Institute, 2014.
    [34] TAERWE L, MATTHYS S. Fib model code for concrete structures 2010[C]//Joost Walraven. The International Federation for Structural Concrete. Switzerland: Wiley-VCH Verlag CmbH & Co., KCaA, 2013: 48-73.
    [35] TABATABAEI M, DAHI TALEGHANI A, ALEM N. Measurement of mixed mode interfacial strengths with cementitious materials[J]. Engineering Fracture Mechanics, 2020, 223: 106739. doi: 10.1016/j.engfracmech.2019.106739
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  165
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2023-08-24
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回