留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响

高纳川 高雪雨 闫莉 桑晓明

高纳川, 高雪雨, 闫莉, 等. 多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响[J]. 复合材料学报, 2024, 41(5): 2395-2403. doi: 10.13801/j.cnki.fhclxb.20230922.002
引用本文: 高纳川, 高雪雨, 闫莉, 等. 多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响[J]. 复合材料学报, 2024, 41(5): 2395-2403. doi: 10.13801/j.cnki.fhclxb.20230922.002
GAO Nachuan, GAO Xueyu, YAN Li, et al. Effect of multifunctional flame retardant tougheners on the flame retardant and mechanical properties of polycarbonates[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2395-2403. doi: 10.13801/j.cnki.fhclxb.20230922.002
Citation: GAO Nachuan, GAO Xueyu, YAN Li, et al. Effect of multifunctional flame retardant tougheners on the flame retardant and mechanical properties of polycarbonates[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2395-2403. doi: 10.13801/j.cnki.fhclxb.20230922.002

多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20230922.002
基金项目: 河北省自然科学基金(E2019209446)
详细信息
    通讯作者:

    闫莉,博士,副教授,硕士生导师,研究方向为高分子材料改性和功能化 E-mail: yl_dlut@126.com

  • 中图分类号: TQ317;TB332

Effect of multifunctional flame retardant tougheners on the flame retardant and mechanical properties of polycarbonates

Funds: Natural Science Foundation of Hebei Province (E2019209446)
  • 摘要: 为了平衡聚碳酸酯(PC)的阻燃改性和力学改性效果,本文采用由种子乳液聚合自制的有机硅-含磷丙烯酸酯核壳结构的阻燃增韧剂(ACR)共混改性PC材料。当在PC中添加质量分数为4wt%的ACR时,4%ACR/PC的极限氧指数(LOI)可达31.7%,垂直燃烧测试达到UL-94 V-0级,锥形量热测试表明燃烧释热和烟释放总量分别降低了43.2%和20.5%;同时,4%ACR/PC保持了与纯PC相近的拉伸强度,且冲击强度提高了9.4%。热重-红外联用、拉曼光谱和燃烧后残余物扫描电镜分析表明,阻燃作用主要来自于磷-硅协同效应及磷元素对PC的催化成炭作用。冲击断面SEM图像显示,增韧作用体现在ACR核层有机硅橡胶可以吸收冲击能量,抑制或终止裂纹的产生。

     

  • 图  1  丙烯酸酯(ACR)的合成路线

    D4—Octamethylcyclotetrasiloxane; DBSA—Dodecylbenzenesulfonic acid; DEAMP—Diethyl methacrylate acrylate; DOPO-AA—9, 10-dihydro-9-oxa-10-phosphophenanthrene-10-oxide acrylate; KH-570—γ-methacryloxypropyltrimethoxysilane

    Figure  1.  Synthesis route of acrylic resin (ACR)

    图  2  ACR、PC和ACR/PC的TGA (a) 和DTG (b) 曲线

    Figure  2.  TGA (a) and DTG (b) curves of ACR, PC and ACR/PC

    图  3  PC、ACR/PC材料的热释放速率(HRR) (a)、总释放热(THR) (b)、生烟速率(SPR) (c)和总生烟量(TSP) (d)曲线

    Figure  3.  Heat release rate (HRR) (a), total heat release (THR) (b), smoke produce rate (SPR) (c) and total smoke production (TSP) (d) curves for PC, ACR/PC

    图  4  PC、ACR/PC材料锥形量热测试后的残炭俯视(a)和正视(b)数码图像

    Figure  4.  Top view digital (a) and front view digital (b) of photographs for residual carbon after cone calorimetry testing of PC, ACR/PC materials

    图  5  PC、ACR/PC锥形量热测试后残炭的SEM和EDS能谱图

    Figure  5.  SEM and EDS spectra of residual carbon after PC and ACR/PC cone calorimetry tests

    图  6  PC、ACR/PC锥形量热测试后残炭的拉曼图谱

    ID/IG—Intensity ratio of D and G peaks

    Figure  6.  Raman spectra of residual carbon after PC and ACR/PC cone calorimetry tests

    图  7  PC、ACR/PC锥形量热测试后残炭的红外图谱

    Figure  7.  Infrared spectra of residual carbon after PC and ACR/PC cone calorimetry tests

    图  8  PC、4%ACR/PC的三维TG-IR图((a), (b))和不同温度下热解产物的红外图谱((c), (d))

    Figure  8.  3D TG-IR maps of PC, 4%ACR/PC ((a), (b)) and IR spectra of pyrolysis products at different temperatures ((c), (d))

    图  9  PC、ACR/PC的应力-应变曲线

    Figure  9.  Stress-strain curves of PC, ACR/PC

    图  10  PC、ACR/PC材料冲击断面的SEM图像

    Figure  10.  SEM images of impact section of PC, ACR/PC materials

    表  1  ACR/聚碳酸酯(PC)复合材料的配方表

    Table  1.   Formulation sheet for ACR/polycarbonate (PC) composites

    Sample PC/wt% ACR/wt%
    PC 100
    1%ACR/PC 99 1
    2%ACR/PC 98 2
    4%ACR/PC 96 4
    下载: 导出CSV

    表  2  PC、ACR/PC的UL-94和极限氧指数(LOI)

    Table  2.   UL-94 and limiting oxygen index (LOI) for PC, ACR/PC

    Sample UL-94 LOI/%
    t1/t2 Dripping Ignition Rating
    PC 17/9 Yes Yes V-2 25.8
    1%ACR/PC 13/4 Yes No V-1 26.3
    2%ACR/PC 6/3 No No V-0 27.6
    4%ACR/PC 1/1 No No V-0 31.7
    Notes: t1—First afterflame time; t2—Second afterflame time.
    下载: 导出CSV

    表  3  ACR、PC、ACR/PC的TGA和DTG数据

    Table  3.   TGA and DTG data for ACR, PC, ACR/PC

    Sample Td5%/℃ Td10%/℃ Td50%/℃ TMax/℃ Char
    residue/wt%
    ACR 375 418 482 476 36.4
    PC 496 506 528 526 26.2
    1%ACR/PC 495 505 530 525 25.6
    2%ACR/PC 485 495 515 513 26.1
    4%ACR/PC 492 497 517 512 28.8
    Notes: Td5%—5wt% mass loss temperature; Td10%—10wt% mass loss temperature; Td50%—50wt% mass loss temperature; TMax—Maximum mass loss temperature.
    下载: 导出CSV

    表  4  PC、ACR/PC的锥形量热数据

    Table  4.   Cone calorimetry data for PC, ACR/PC

    Sample TTI/s tp/s pHRR/(kW·m−2) THR/(MJ·m−2) Av-EHC/(MJ·kg−1) Char residue/wt% TSP/m2
    PC 165 280 165 15.5 6.2 17.5 7.3
    1%ACR/PC 116 271 145 13.6 6.4 18.6 6.3
    2%ACR/PC 112 258 125 12.1 5.0 20.2 6.1
    4%ACR/PC 102 275 73 8.8 4.3 26.1 5.8
    Notes: TTI—Ignition time, ±1 s; pHRR—Peak heat release rate, ±2 kW·m–2; tp—Peak time corresponding to the heat release rate, ±1 s; THR—Total heat release, ±0.5 MJ·m–2; Av-EHC—Average effective heat of combustion, ±0.1 MJ·kg–1; TSP—Total smoke production, ±0.1 m2.
    下载: 导出CSV

    表  5  PC、ACR/PC的力学性能测试结果

    Table  5.   Mechanical property test results of PC, ACR/PC

    Sample Tensile strength/MPa Impact strength/(J·m−1)
    PC 69.7±1.5 6.4±0.1
    1%ACR/PC 69.8±1.4 8.5±0.1
    2%ACR/PC 69.1±1.7 7.6±0.2
    4%ACR/PC 68.4±1.3 7.0±0.1
    下载: 导出CSV
  • [1] 刘俊威, 高山俊, 沈春晖, 等. 硅-磷复配阻燃剂对聚碳酸酯/ASA复合材料阻燃性能及动态力学性能的影响[J]. 复合材料学报, 2018, 35(11): 3062-3072.

    LIU Junwei, GAO Shanjun, SHEN Chunhui, et al. Flame-retardation synergism and dynamic mechanical properties of polycarbonate/ASA composites modified by silicon and organo-phosphate containing flame retardants[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3062-3072(in Chinese).
    [2] NI P, FANG Y Y, QIAN L J, et al. Flame-retardant behavior of a phosphorus/silicon compound on polycarbonate[J]. Journal of Applied Polymer Science, 2018, 135(6): e45815.
    [3] YANG Y Y, LIU J, CAI X F. Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 571-583. doi: 10.1007/s10973-016-5519-2
    [4] HOU S J, ZHANG Y J, JIANG P K. Phosphonium sulfonates as flame retardants for polycarbonate[J]. Polymer Degradation and Stability, 2016, 130: 165-172. doi: 10.1016/j.polymdegradstab.2016.06.004
    [5] ZHANG X Y, ZHANG D L, ZHANG W C, et al. Flame retardant polycarbonate with ultralow loading 1, 3-benzenedisulfonate[J]. Polymer Degradation and Stability, 2023, 214: 110389.
    [6] WAWRZYN E, SCHARTEL B, KARRASCH A, et al. Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate): Adding inorganic additives[J]. Polymer Degradation and Stability, 2014, 106: 74-87. doi: 10.1016/j.polymdegradstab.2013.08.006
    [7] WU X, QIN Z, ZHANG W, et al. KCl nanoparticles-loaded octaphenylsilsesquioxane as an efficient flame retardant for polycarbonate[J]. Reactive and Functional Polymers, 2022, 177: 105284. doi: 10.1016/j.reactfunctpolym.2022.105284
    [8] STATLER D, STAJDUHAR E, GUPTA R K. Flame retardancy of polycarbonate upon repeated recycling[J]. Journal of Fire Sciences, 2008, 26(4): 331-350.
    [9] SUN C C, ZHANG W, CUI Y H, et al. Synthesis of phosphazene-triazine bi-base sulfonate and its applications in flame-retardant modified polycarbonate[J]. Journal of Applied Polymer Science, 2022, 139(21): e52224.
    [10] WANG X X, ZHANG W C, QIN Z L, et al. Optically transparent and flame-retarded polycarbonate nanocomposite based on diphenylphosphine oxide-containing polyhedral oligomeric silsesquioxanes[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 92-102. doi: 10.1016/j.compositesa.2018.11.013
    [11] QIAN Z Y, ZOU B, XIAO Y L, et al. Targeted modification of black phosphorus by MIL-53(Al) inspired by "Cannikin's Law" to achieve high thermal stability of flame retardant polycarbonate at ultra-low additions[J]. Composites Part B: Engineering, 2022, 238: 109943. doi: 10.1016/j.compositesb.2022.109943
    [12] GAO X Y, YAN L, SANG X M. Preparation of multifunctional silicon-phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid[J]. Journal of Applied Polymer Science, 2023, 140(4): e53380.
    [13] JIANG Y, HAO Z F, LUO H S, et al. Synergistic effects of boron-doped silicone resin and a layered double hydroxide modified with sodium dodecyl benzenesulfonate for enhancing the flame retardancy of polycarbonate[J]. RSC Advances, 2018, 8(20): 11078-11086.
    [14] SAI T, RAN S Y, GUO Z H, et al. Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates[J]. Chemical Engineering Journal, 2021, 409(20): 128223.
    [15] WANG Z P, QIU Y, LIU A Q, et al. Micro-crosslinking of phosphaphenanthrene/siloxane molecule initiate aggregation flame retardant and toughening enhancement effects on its polycarbonate composite[J]. Chemical Engineering Journal, 2023, 466: 143169.
    [16] 中国石油和化学工业协会. 塑料用氧指数法测定 燃烧行为 第2部分: 室温试验: GB/T 2406.2—2008[S]. 北京: 中国标准出版社, 2009.

    China Petroleum and Chemical Industry Association. Plastics—Determination of burning behavior by oxygen index—Part 2: Ambient-temperature test: GB/T 2406.2—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中国石油和化学工业协会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2008.

    China Petroleum and Chemical Industry Association. Plastics—Determination of burning characteristics—Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] ISO/TC 92. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1[S]. International Organization for Standardization, 2015.
    [19] 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2007(in Chinese).
    [20] 中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics—Determination of izod inpact sterngth: GB/T 1843—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [21] WANG Y C, YU K, ZHAO J P, et al. NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 129001. doi: 10.1016/j.colsurfa.2022.129001
    [22] CHEN L M, ZENG S H, XU Y, et al. Epoxy-modified silicone resin based N/P/Si synergistic flame-retardant coating for wood surface[J]. Progress in Organic Coatings, 2022, 170: 106953. doi: 10.1016/j.porgcoat.2022.106953
    [23] GAO D D, WEN X, GUAN Y Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites[J]. Composites Communications, 2020, 17: 170-176. doi: 10.1016/j.coco.2019.12.007
    [24] SCHARTEL B, HULL T R. Development of fire-retarded materials-interpretation of cone calorimeter data[J]. Fire and Materials, 2007, 31(5): 327-354.
    [25] YU M, ZHANG T T, LI J, et al. Enhancing toughness, flame retardant, hydrophobic and dielectric properties of epoxy resin by incorporating multifunctional additive containing phosphorus/silicon[J]. Materials & Design, 2023, 225: 111529.
    [26] LEE J Y, CHIN I J, CHOI H J. Effect of particle size and crosslinking on the toughening of core-shell-type rubber-modified poly(lactic acid) composites[J]. Polymer Testing, 2018, 65: 440-449.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  154
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-09-04
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-23
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回