留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管喷涂层增韧玻璃纤维/环氧树脂基复合材料的制备与增韧机制

赵红晨 欧云福 吴龙强 茅东升

赵红晨, 欧云福, 吴龙强, 等. 碳纳米管喷涂层增韧玻璃纤维/环氧树脂基复合材料的制备与增韧机制[J]. 复合材料学报, 2024, 41(5): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20230922.001
引用本文: 赵红晨, 欧云福, 吴龙强, 等. 碳纳米管喷涂层增韧玻璃纤维/环氧树脂基复合材料的制备与增韧机制[J]. 复合材料学报, 2024, 41(5): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20230922.001
ZHAO Hongchen, OU Yunfu, WU Longqiang, et al. Preparation and toughening mechanism of glass fiber/epoxy composites toughened by carbon nanotube sprayed layers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20230922.001
Citation: ZHAO Hongchen, OU Yunfu, WU Longqiang, et al. Preparation and toughening mechanism of glass fiber/epoxy composites toughened by carbon nanotube sprayed layers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2376-2385. doi: 10.13801/j.cnki.fhclxb.20230922.001

碳纳米管喷涂层增韧玻璃纤维/环氧树脂基复合材料的制备与增韧机制

doi: 10.13801/j.cnki.fhclxb.20230922.001
基金项目: 宁波市自然科学基金(2021J208);中国博士后科学基金(2022M713241);中科院“百人计划”(2021R01005);宁波市“甬江引才工程”(2021A-045-C)
详细信息
    通讯作者:

    欧云福,博士,助理研究员,研究方向为复合材料增强与增韧  E-mail: ouyunfu@nimte.ac.cn

    茅东升,博士,研究员,研究方向纳米增强复合材料  E-mail: maodongsheng@nimte.ac.cn

  • 中图分类号: TB332

Preparation and toughening mechanism of glass fiber/epoxy composites toughened by carbon nanotube sprayed layers

Funds: Natural Science Foundation of Ningbo (2021J208); Fellowship of China Postdoctoral Science Foundation (2022M713241); "One Hundred Talented People" of the Chinese Academy of Sciences (2021R01005); Ningbo Yongjiang Talent Introduction Program (2021A-045-C)
  • 摘要: 玻璃纤维增强树脂基复合板(GFRP)由于价格便宜、力学性能优异、耐疲劳等优点,广泛应用于风电叶片、运动器材等领域。但是上浆剂和树脂间的不良配合易导致层间分层破坏。本文通过在玻璃纤维织物表面喷涂碳纳米管(CNT)喷涂层,在不破坏面内性能的情况下,使双酚F型和双酚A型环氧树脂基体的玻璃纤维/树脂复合材料的层间I型断裂韧性分别提高了71.7%和23.4%。结果表明:CNT/丙酮分散液喷涂工艺在玻璃纤维上稳定地负载了CNT,成功改变了玻璃纤维表面形态,并通过机械锁合、拔出耗能、延长裂纹扩展路线和触发纤维桥接等机制,成功对不同树脂基体的GFRP实现增韧。

     

  • 图  1  碳纳米管(CNT)喷涂层及增韧玻璃纤维增强树脂基复合材料(GFRP)板材制备过程

    Figure  1.  Preparation process of carbon nanotube (CNT) spray coating toughened glass fiber reinforced plastic (GFRP) sheet

    图  2  双悬臂梁试样测试示意图

    Figure  2.  Schematic diagram of double cantilever beam specimen testing

    图  3  ((a), (b)) CNT/丙酮改性前后玻璃纤维(GF)的表面元素;(c) CNT/丙酮改性前后GF的表面粗糙度(Ra)变化;(d) CNT/水分散和CNT/丙酮分散液超声前后状态;(e) CNT在GF表面的状态

    Figure  3.  ((a), (b)) Surface elements of glass fiber (GF) before and after CNT/acetone modification; (c) Surface roughness (Ra) changes of GF before and after CNT/acetone modification; (d) State of CNT/water dispersion and CNT/acetone dispersion before and after ultrasound; (e) State of CNT on GF surface

    图  4  不同树脂基体的CNT/GFRP的I型层间断裂韧性测试过程与结果:(a) I型层间断裂韧性测试过程;((b), (c)) A-Baseline和A-CNT的I型断裂韧性力-位移曲线及R曲线;(d) 两种树脂复合材料I型层间断裂韧性扩展值对比;((e), (f)) F-Baseline和F-CNT的I型断裂韧性力-位移曲线及R曲线

    GIc—Mode I interlaminar fracture toughness propagation value

    Figure  4.  Mode I testing process and results of CNT/GFRP with different resin matrices: (a) Process of mode I interlaminar fracture toughness testing;((b), (c)) A-Baseline and A-CNT mode I fracture toughness force-displacement curves and R-curves; (d) Comparison of the results of mode I interlaminar fracture toughness extension for two resin composite materials; ((e), (f)) Force-displacement curves andR-curves of F-Baseline and F-CNT mode I fracture toughness

    图  5  引入CNT前后复合材料层间裂面状态和力-位移曲线

    Figure  5.  State of interlayer crack surface and force-displacement curves of composite materials before and after the introduction of CNT

    图  6  A-Baseline、A-CNT、F-Baseline、F-CNT这4种样品的Ⅰ型裂纹扩展的超景深显微镜图像

    Figure  6.  Super-depth microscopic images of mode I crack propagation in four samples of A-Baseline, A-CNT, F-Baseline and F-CNT

    The yellow arrow indicates the location where the crack is relatively smooth; The red arrow indicates the location wherefiber nesting bridging may occur

    图  7  双酚F环氧树脂基体GFRP的Ⅰ型断裂侧面形态:(a) F-Baseline层间光滑脱粘;(b) F-CNT层间的纤维桥接;(c) F-CNT样品的分层和“桥接”

    Figure  7.  Type I fracture profile of bisphenol F epoxy resin matrix GFRP: (a) F-Baseline smooth inter layer debonding;(b) Fiber bridging between F-CNT interlayers; (c) Layering and "bridging" of F-CNT samples

    图  8  A-Baseline、A-CNT、F-Baseline、F-CNT这4种样品的I型断裂面的SEM图像

    Figure  8.  SEM images of mode I fracture surfaces of A-Baseline, A-CNT, F-Baseline and F-CNT samples

    表  1  样品标记

    Table  1.   Sample marking

    Resin matrix With or without CNT Abbreviation
    Bisphenol A type epoxy resin and curing agent (R0221A+R0221B) A-Baseline
    Bisphenol A type epoxy resin and curing agent (R0221A+R0221B) CNT A-CNT
    Bisphenol F type epoxy resin and curing agent (Epon862+D230) F-Baseline
    Bisphenol F type epoxy resin and curing agent (Epon862+D230) CNT F-CNT
    下载: 导出CSV
  • [1] CORREIA J R, BAI Y, KELLER T. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications[J]. Composite Structures, 2015, 127: 267-287. doi: 10.1016/j.compstruct.2015.03.006
    [2] ALTIN KARATAŞ M, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326. doi: 10.1016/j.dt.2018.02.001
    [3] DI BOON Y, JOSHI S C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites[J]. Materials Today Communications, 2020, 22: 100830. doi: 10.1016/j.mtcomm.2019.100830
    [4] THOMASON J L. Glass fibre sizing: A review[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105619. doi: 10.1016/j.compositesa.2019.105619
    [5] 章建忠, 许升, 樊家澍, 等. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. doi: 10.16085/j.issn.1000-6613.2022-0702

    ZHANG Jianzhong, XU Sheng, FAN Jiashu, et al. Progress in characterization and analysis of glass fiber sizing[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838(in Chinese). doi: 10.16085/j.issn.1000-6613.2022-0702
    [6] GUO X Y, LU Y G, SUN Y, et al. Effect of sizing on interfacial adhesion property of glass fiber-reinforced polyurethane composites[J]. Journal of Reinforced Plastics and Composites, 2018, 37(5): 321-330. doi: 10.1177/0731684417744664
    [7] DAI H J. Carbon nanotubes: Opportunities and challenges[J]. Surface Science, 2002, 500(1): 218-241.
    [8] DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-891. doi: 10.1016/0008-6223(95)00017-8
    [9] THOSTENSON E T, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912. doi: 10.1016/S0266-3538(01)00094-X
    [10] HAN C L, WANG G D, LI N, et al. Study on interlaminar performance of CNTs/epoxy film enhanced GFRP under low-temperature cycle[J]. Composite Structures, 2021, 272: 114191. doi: 10.1016/j.compstruct.2021.114191
    [11] SHIN P S, KWON D J, KIM J H, et al. Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites[J]. Composites Science and Technology, 2017, 142: 98-106. doi: 10.1016/j.compscitech.2017.01.026
    [12] LI K, ZHAO R, XIA J X, et al. Reinforcing microwave absorption multiwalled carbon nanotube-epoxy composites using glass fibers for multifunctional applications[J]. Advanced Engineering Materials, 2020, 22(3): 1900780. doi: 10.1002/adem.201900780
    [13] SONG Y S, YOUN J R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites[J]. Carbon, 2005, 43(7): 1378-1385. doi: 10.1016/j.carbon.2005.01.007
    [14] GENG Y, LIU M Y, LI J, et al. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(12): 1876-1883. doi: 10.1016/j.compositesa.2008.09.009
    [15] THESS A, LEE R, NIKOLAEV P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273(5274): 483-487. doi: 10.1126/science.273.5274.483
    [16] HUBERT P, ASHRAFI B, ADHIKARI K, et al. Synthesis and characterization of carbon nanotube-reinforced epoxy: Correlation between viscosity and elastic modulus[J]. Composites Science and Technology, 2009, 69(14): 2274-2280. doi: 10.1016/j.compscitech.2009.04.023
    [17] 姚佳伟, 冯瑞瑄, 牛一凡, 等. 纳米碳材料/热塑性树脂层间增韧热固性树脂基复合材料研究进展[J]. 复合材料学报, 2022, 39(2): 528-543. doi: 10.13801/j.cnki.fhclxb.20210805.006

    YAO Jiawei, FENG Ruixuan, NIU Yifan, et al. Research progress of the interleaved thermoset composites by carbon nanomaterials/thermoplastic resin[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 528-543(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210805.006
    [18] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10): 307-314.

    YU Yanyan, ZHANG Yuan, GAO Limin, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 307-314(in Chinese).
    [19] 陈师. 电泳沉积法制备CNT/CF及其复合材料界面微观力学行为的拉曼研究[D]. 上海: 东华大学, 2016.

    CHEN Shi. Preparation of CNT/CF by EPD and Raman study on interfacial micro-mechanical properties of their composites[D]. Shanghai: Donghua University, 2016.
    [20] KIM J H, NAM K W, MA S B, et al. Fabrication and electrochemical properties of carbon nanotube film electrodes[J]. Carbon, 2006, 44(10): 1963-1968. doi: 10.1016/j.carbon.2006.02.002
    [21] LI T S, LI M, GU Y Z, et al. Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite[J]. Composites Science and Technology, 2018, 166: 176-182. doi: 10.1016/j.compscitech.2018.02.007
    [22] SU Y N, ZHANG S C, ZHANG X H, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly(ether ether ketone) multiscale composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 89-98. doi: 10.1016/j.compositesa.2018.02.030
    [23] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 102-110. doi: 10.1016/j.compositesa.2014.11.029
    [24] CHAUDHRY M S, CZEKANSKI A, ZHU Z H. Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites[J]. International Journal of Mechanical Sciences, 2017, 131-132: 480-489. doi: 10.1016/j.ijmecsci.2017.06.016
    [25] LI N, WANG G D, MELLY S K, et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer[J]. Composite Structures, 2019, 208: 13-22. doi: 10.1016/j.compstruct.2018.10.002
    [26] American Society for Testing and Material. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—01[S]. West Conshehoken: ASTM International, 2007.
    [27] WANG Z Y, YANG B, XIAN G, et al. An effective method to improve the interfacial shear strength in GF/CF reinforced epoxy composites characterized by fiber pull-out test[J]. Composites Communications, 2020, 19: 168-172. doi: 10.1016/j.coco.2020.03.013
    [28] SAKAI M, MIYAJIMA T, INAGAKI M. Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites[J]. Composites Science and Technology, 1991, 40(3): 231-250. doi: 10.1016/0266-3538(91)90083-2
    [29] BRADLEY W, COHEN R. Matrix deformation and fracture in graphite reinforced epoxies[M]. Pennsylvania: ASTM Special Technical Publication, 1985: 389-410.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  170
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-08-30
  • 录用日期:  2023-09-08
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回