留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐照改性聚丙烯腈/热塑性聚氨酯锂离子电池隔膜的制备与性能

王一迪 巩桂芬 崔巍巍 王召阳 楼晨霞

王一迪, 巩桂芬, 崔巍巍, 等. 辐照改性聚丙烯腈/热塑性聚氨酯锂离子电池隔膜的制备与性能[J]. 复合材料学报, 2024, 41(5): 2397-2406. doi: 10.13801/j.cnki.fhclxb.20230920.004
引用本文: 王一迪, 巩桂芬, 崔巍巍, 等. 辐照改性聚丙烯腈/热塑性聚氨酯锂离子电池隔膜的制备与性能[J]. 复合材料学报, 2024, 41(5): 2397-2406. doi: 10.13801/j.cnki.fhclxb.20230920.004
WANG Yidi, GONG Guifen, CUI Weiwei, et al. Preparation and properties of irradiated modified polyacrylonitrile/thermoplastic polyurethane lithium-ion battery separator[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2397-2406. doi: 10.13801/j.cnki.fhclxb.20230920.004
Citation: WANG Yidi, GONG Guifen, CUI Weiwei, et al. Preparation and properties of irradiated modified polyacrylonitrile/thermoplastic polyurethane lithium-ion battery separator[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2397-2406. doi: 10.13801/j.cnki.fhclxb.20230920.004

辐照改性聚丙烯腈/热塑性聚氨酯锂离子电池隔膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230920.004
基金项目: 国家自然科学基金(51603057)
详细信息
    通讯作者:

    巩桂芬,博士,教授,硕士生导师,研究方向为锂离子电池隔膜材料、保温复合材料 E-mail:ggf-hust@163.com

  • 中图分类号: TB332;TQ619.6

Preparation and properties of irradiated modified polyacrylonitrile/thermoplastic polyurethane lithium-ion battery separator

Funds: National Natural Science Foundation of China (51603057)
  • 摘要: 聚丙烯腈(PAN)隔膜具有优秀的电化学性能,作为锂离子电池隔膜材料受到广泛关注,但其机械强度与耐热性不足问题依然存在。本文选用由软段与硬段构成的聚合物热塑性聚氨酯(TPU)与PAN进行混纺,并将制备的纤维膜通过60Co γ 射线对其改性,制备出一种新型锂离子电池隔膜。通过FTIR发现辐照改性PAN/TPU隔膜,PAN分子间出现环化反应,并且PAN与TPU分子间出现C=N—N键的交联,环和交联结构的引入都提高隔膜的力学与耐热性能,此外通过100 kGy改性后的隔膜电化学性能优异,具有较高的吸液率(552%)与孔隙率(68.2%),电化学稳定窗口为5.42 V,界面阻抗为149.44 Ω,离子电导率为1.68×10−3 S/cm,均优于辐照前的隔膜,1 C下循环100次后放电容量保持率为96.53%,并在循环测试中表现出优异的倍率性能。

     

  • 图  1  聚丙烯腈/热塑性聚氨酯(PAN/TPU)复合隔膜工艺流程与辐照原理

    DMF—N, N-dimethylformamide

    Figure  1.  Polyacrylonitrile/thermoplastic polyurethane (PAN/TPU) composite separators process flow chart and irradiation schematic

    图  2  不同辐照剂量下的PAN/TPU纤维复合隔膜的SEM图像:(a) 0 kGy;(b) 50 kGy;(c) 100 kGy;(d) 150 kGy;((e), (f)) 200 kGy

    Figure  2.  SEM images of PAN/TPU fiber composite separators at different radiation doses: (a) 0 kGy; (b) 50 kGy; (c) 100 kGy; (d) 150 kGy; ((e), (f)) 200 kGy

    图  3  不同辐照剂量下PAN/TPU纤维复合隔膜的FTIR图谱(a)和XRD图谱(b)

    Figure  3.  FTIR spectra (a) and XRD patterns (b) of PAN/TPU fibercomposite separators at different radiation doses

    图  4  PAN/TPU纤维复合隔膜的力学性能对比

    Figure  4.  Comparison of mechanical properties for PAN/TPU fiber composite separators

    图  5  不同隔膜的吸液率与孔隙率(a)和接触角(b)对比

    PP—Polypropylene

    Figure  5.  Comparison of liquid absorption and porosity (a) and contact angle (b) for different separators

    图  6  不同隔膜的TGA曲线(a)和热收缩图片(b)

    Figure  6.  TGA curves (a) and heat shrink images (b) for different separators

    图  7  不同隔膜的电化学性能对比

    Figure  7.  Comparison of electrochemical properties of different separators

    图  8  不同隔膜的界面阻抗

    Figure  8.  Interfacial impedance of different separators

    图  9  不同隔膜的交流阻抗图

    Figure  9.  AC impedance maps of different separators

    图  10  不同隔膜的循环性能曲线

    Figure  10.  Cyclic performance curves of different separators

    图  11  不同隔膜的倍率性能曲线

    Figure  11.  Magnanimity performance curves of different separators

  • [1] YANG Y F, WANG W K, MENG G L, et al. Function-directed design of battery separators based on microporous polyolefin membranes[J]. Journal of Materials Chemistry A, 2022, 10(27): 14137-14170.
    [2] YU L Y, GU J Y, PAN C, et al. Recent developments of composite separators based on high-performance fibers for lithium batteries[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107132.
    [3] CHOI J, KIM P J. A roadmap of battery separator development: Past and future[J]. Current Opinion in Electrochemistry, 2022, 31: 100858.
    [4] DAI X K, ZHANG X M, WEN J W, et al. Research progress on high-temperature resistant polymer separators for lithium-ion batteries[J]. Energy Storage Materials, 2022, 51: 638-659.
    [5] 邓玉睿. 聚酰亚胺气凝胶安全电池隔膜设计及综合性能研究[D]. 合肥: 中国科学技术大学, 2022.

    DENG Yurui. Design and comprehensive performance research of polyimide aerogel safety battery separator[D]. Hefei: University of Science and Technology of China, 2022(in Chinese).
    [6] 赵卫哲. γ射线辐照对聚丙烯腈纤维环化交联及碳纤维结构与性能的影响[D]. 上海: 东华大学, 2016.

    ZHAO Weizhe. The effects of gamma ray on cyclization and crosslinking of polyacrylontrile fibers and structure and properties of carbon fibers[D]. Shanghai: Donghua University, 2016(in Chinese).
    [7] ALVES P, COELHO J F J, HAACK J, et al. Surface modification and characterization of thermoplastic polyurethane[J]. European Polymer Journal, 2009, 45(5): 1412-1419.
    [8] PILLAI S D, PILLAI E T. Agriculture: Electron beam irradiation technology applications in the food industry[J]. Reference Module in Earth Systems and Environmental Sciences, 2021: 313-329.
    [9] GASTON F, DUPUY N, GIRARD-PERIER N, et al. Investigations at the product, macromolecular, and molecular level of the physical and chemical properties of a γ-irradiated multilayer EVA/EVOH/EVA film: Comprehensive analysis and mechanistic insights[J]. Polymers, 2021, 13(16): 2671.
    [10] CHAND P, JOSHI A, SINGH V. High performance of facile microwave-assisted BiPO4 nanostructures as electrode material for energy storage applications[J]. Materials Science in Semiconductor Processing, 2021, 122(1): 105472.
    [11] DA Z, RUO Z, HONG L. Application of microwave irradiation in extracting of gold, uranium and environmental protection [J]. Hydrometallurgy of China, 2002, 21(2): 62.
    [12] WU Z T, QIAO D L, ZHAO S M, et al. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations[J]. International Journal of Biological Macromolecules, 2022, 203: 153-175.
    [13] KUMAR R, SAHOO S, JOANNI E, et al. A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond conventional heating[J]. Journal of Energy Chemistry, 2022, 74: 252-282.
    [14] WANG S S, HAN C Y, HAN L J, et al. Gamma radiation on poly(ε-caprolactone) in the presence of vinyltrimethoxysilane[J]. Polymer Engineering & Science, 2011, 51(2): 369-376.
    [15] SINGH A K, ADHIKARI R, SUSAN M A B H. Editorial: Modification of polymers with gamma radiation for various high-performance applications[J]. Frontiers in Chemistry, 2022, 10: 1042056.
    [16] 徐翔宇. 电纺聚丙烯腈纳米纤维的辐照效应及对预氧化的影响[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2017.

    XU Xiangyu. Radiation effect of electrospun polyacrylonitrile nanofibers and the subsequent effect on stabilization process[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2017(in Chinese).
    [17] GAMZE KARSLI N, AYTAC A, AKBULUT M, et al. Effects of irradiated polypropylene compatibilizer on the properties of short carbon fiber reinforced polypropylene composites[J]. Radiation Physics & Chemistry, 2013, 84: 74-78.
    [18] 钱群, 吴明红, 包伯荣. 丙烯酰胺在预辐照聚丙烯纤维上接枝反应的研究[J]. 辐射研究与辐射工艺学报, 2001, 19(4): 259-262.

    QIAN Qun, WU Hongming, BAO Borong. Study on grafting reaction of acrylamide onto pre-irradiated polypropylene fibers[J]. Journal of Radiation Research and Radiation Processing, 2001, 19(4): 259-262.
    [19] 王鑫. 聚丙烯腈纳米纤维增强聚氨酯基复合膜的力学性能研究[D]. 杭州: 浙江理工大学, 2018.

    WANG XIN. Preparation and mechanical properties of polyacrylonitrile nanofiber reinforced thermoplastic polyurethane film [D]. Hangzhou: Zhejiang University of Technology, 2018(in Chinese).
    [20] 张艳华, 黄玉东, 赵峰, 等. γ-射线辐照对聚丙烯腈纤维结构和强度的影响[J]. 化学与粘合, 2009, 31(1): 1-3, 27.

    ZHANG Yanhua, HUANG Yudong, ZHAO Feng, et al. Influence of γ-ray radiation on the structure and strength of PAN fibers[J]. Chemistry and Adhesion, 2009, 31(1): 1-3, 27(in Chinese).
    [21] SUI H L, LIU X Y, ZHONG F C, et al. Relationship between free volume and mechanical properties of polyurethane irradiated by Gamma rays[J]. Journal of Radioanalytical & Nuclear Chemistry, 2014, 300(2): 701-706.
    [22] JIA S J, HUANG K L, LONG J T, et al. Electron beam irradiation modified electrospun polyvinylidene fluoride/polyacrylonitrile fibrous separators for safe lithium-ion batteries[J]. Journal of Applied Polymer Science, 2021, 138(18): 50359.
    [23] ZOU M G, LUO Y M, MA X, et al. High-performance electrospun membrane for lithium-ion batteries[J]. Journal of Membrane Science, 2021, 637: 119597.
    [24] CHEN W Y, LIU Y B, MA Y, et al. Improved performance of PVDF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method[J]. Materials Letters, 2014, 133(10): 67-70.
    [25] TANG L P, WU Y K, HE D, et al. Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 931: 117181.
    [26] DENG J H, CAO D Q, YANG X Q, et al. Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application[J]. Chemical Engineering Journal, 2022, 433(3): 133934.
  • 加载中
图(11)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  246
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-08-14
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-20
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回