留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结晶动力学研究聚丁二酸丁二醇酯/微晶纤维素弱界面相互作用对其结晶行为的影响

张阳 廖壑 张玥 张玉梅

张阳, 廖壑, 张玥, 等. 基于结晶动力学研究聚丁二酸丁二醇酯/微晶纤维素弱界面相互作用对其结晶行为的影响[J]. 复合材料学报, 2024, 41(5): 2366-2374. doi: 10.13801/j.cnki.fhclxb.20230920.001
引用本文: 张阳, 廖壑, 张玥, 等. 基于结晶动力学研究聚丁二酸丁二醇酯/微晶纤维素弱界面相互作用对其结晶行为的影响[J]. 复合材料学报, 2024, 41(5): 2366-2374. doi: 10.13801/j.cnki.fhclxb.20230920.001
ZHANG Yang, LIAO He, ZHANG Yue, et al. Effect of weak interfacial interaction between poly(butylene succinate) and microcrystalline cellulose on its crystallization behavior based on crystallization kinetics[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2366-2374. doi: 10.13801/j.cnki.fhclxb.20230920.001
Citation: ZHANG Yang, LIAO He, ZHANG Yue, et al. Effect of weak interfacial interaction between poly(butylene succinate) and microcrystalline cellulose on its crystallization behavior based on crystallization kinetics[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2366-2374. doi: 10.13801/j.cnki.fhclxb.20230920.001

基于结晶动力学研究聚丁二酸丁二醇酯/微晶纤维素弱界面相互作用对其结晶行为的影响

doi: 10.13801/j.cnki.fhclxb.20230920.001
详细信息
    通讯作者:

    张玥,博士,副研究员,硕士生导师,研究方向为纤维素纤维高效绿色制备 E-mail: zhangyue@dhu.edu.cn

    张玉梅,博士,研究员,博士生导师,研究方向为纤维成形工艺-结构-性能 E-mail: zhangym@dhu.edu.cn

  • 中图分类号: TQ323.4;TB332

Effect of weak interfacial interaction between poly(butylene succinate) and microcrystalline cellulose on its crystallization behavior based on crystallization kinetics

  • 摘要: 为了研究高含量刚性粒子存在下的成核作用和复合材料弱界面相互作用对聚丁二酸丁二醇酯(PBS)结晶行为的影响,采用熔融共混法制备了微晶纤维素(MCC)含量为5wt%~25wt%的PBS/MCC复合材料,利用差示扫描量热仪对PBS/MCC复合单丝的熔融行为和非等温结晶动力学进行了表征和分析,并使用由Jeziorny模型修改的Avrami方法和由Vyazovkin修改的Friedman等转化率方法研究了PBS的结晶行为和结晶机制。结晶动力学研究表明:MCC可以作为有效的成核剂显著提高PBS的结晶温度和结晶速率,促进PBS晶体的生长,且不会改变PBS的成核机制和晶体生长几何形状,但PBS/MCC弱界面相互作用会明显抑制PBS自身成核能力, PBS结晶度从34.8%降低至28.8%。本文结果对研究高含量刚性粒子存在下的弱界面相互作用对PBS结晶行为的影响具有一定的指导意义。

     

  • 图  1  不同MCC含量下PBS的升温曲线(a)和降温曲线(b)

    Figure  1.  Heating curves (a) and cooling curves (b) of PBS with different MCC contents

    图  2  不同MCC含量下PBS的相对结晶度Xt与结晶温度(a)和结晶时间(b)的关系

    Figure  2.  Relationship between relative crystallinity Xt and crystallization temperature (a) and crystallization time (b) of PBS with different MCC contents

    图  3  PBS在不同MCC含量下的Avrami图

    Figure  3.  Avrami plot of PBS with different MCC contents

    图  4  ln(dX/dt)X,i对应–TX,i–1的Friedman曲线

    Figure  4.  Friedman curves of ln(dX/dt)X,i corresponding to –TX,i–1

    图  5  不同MCC含量下PBS的球晶生长状态

    Figure  5.  Spherical growth state of PBS with different MCC contents

    图  6  PBS的结晶过程示意图:(a) 纯PBS;(b) PBS/MCC复合材料

    Figure  6.  Crystallization mechanism of PBS: (a) Pure PBS; (b) PBS/MCC composite materials

    表  1  聚丁二酸丁二醇酯/微晶纤维素(PBS/MCC)复合材料的组成

    Table  1.   Composition of poly(butylene succinate)/microcrystalline cellulose (PBS/MCC) composite materials

    Sample PBS/wt% MCC/wt%
    PBS 100 0
    P-M5 95 5
    P-M15 85 15
    P-M25 75 25
    下载: 导出CSV

    表  2  不同MCC含量下PBS的熔融和结晶特征参数

    Table  2.   Melting and crystallization characteristic parameters of PBS with different MCC contents

    Sample Tm/℃ Tc/℃ Hm/(J·g−1) χc/% Hc/(J·g−1) χc,Tc/%
    PBS 114.5 77.0 69.5 34.8 59.5 53.8
    P-M5 114.2 77.2 62.3 32.8 54.0 51.4
    P-M15 114.3 77.4 53.6 31.5 47.4 50.5
    P-M25 113.9 79.3 43.2 28.8 41.7 50.3
    Notes: Tm—Melting point; Tc—Crystallization temperature; ∆Hm—Melting enthalpy; χc—Crystallinity; ∆Hc—Crystallization enthalpy; χc,Tc—Absolute crystallinity.
    下载: 导出CSV

    表  3  不同MCC含量下PBS的Avrami和Jeziorny参数

    Table  3.   Avrami and Jeziorny parameters of PBS with different MCC contents

    Sample n Zt Zc t1/2/min
    PBS 6.4 0.05 0.74 1.50
    P-M5 6.3 0.09 0.79 1.38
    P-M15 6.4 0.14 0.82 1.28
    P-M25 6.2 0.27 0.88 1.16
    Notes: n—Avrami index; Zt—Rate constant; Zc—Corrected rate constant; t1/2—The half crystallization time.
    下载: 导出CSV

    表  4  不同MCC含量下PBS的结晶活化能

    Table  4.   Crystallization activation energies of PBS with different MCC contents

    Xt EX/(kJ·mol–1)
    PBS P-M5 P-M15 P-M25
    0.1 −143.8 −117.8 −130.5 −135.3
    0.3 −123.7 −103.5 −122.2 −125.9
    0.5 −110.5 −95.4 −111.0 −113.7
    0.7 −96.5 −84.2 −95.4 −97.0
    0.9 −74.5 −60.5 −69.2 −66.9
    Notes: Xt—Relative crystallinity; EX—Crystallization activation energy.
    下载: 导出CSV
  • [1] REDDY J P, RHIM J W. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose[J]. Carbohydrate Polymers, 2014, 110: 480-488. doi: 10.1016/j.carbpol.2014.04.056
    [2] ZHAO J H, WANG X Q, ZENG J, et al. Biodegradation of poly(butylene succinate) in compost[J]. Journal of Applied Polymer Science, 2005, 97(6): 2273-2278. doi: 10.1002/app.22009
    [3] RIZZARELLI P, PUGLISI C, MONTAUDO G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters[J]. Polymer Degradation and Stability, 2004, 85(2): 855-863. doi: 10.1016/j.polymdegradstab.2004.03.022
    [4] DA SILVA DUTRA L, DE SOUZA BELAN COSTA T, LOBO V T V, et al. Preparation of polymer microparticles through non-aqueous suspension polycondensations: Part III—Degradation of PBS microparticles in different aqueous environments[J]. Journal of Polymers and the Environment, 2019, 27(1): 176-188.
    [5] SOATTHIYANON N, AUMNATE C, SRIKULKIT K. Rheological, tensile, and thermal properties of poly(butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose)[J]. Polymer Composites, 2020, 41(7): 2777-2791. doi: 10.1002/pc.25575
    [6] TAN L C, CHEN Y W, ZHOU W H, et al. Novel approach toward poly(butylene succinate)/single-walled carbon nanotubes nanocomposites with interfacial-induced crystallization behaviors and mechanical strength[J]. Polymer, 2011, 52(16): 3587-3596. doi: 10.1016/j.polymer.2011.06.006
    [7] WANG X W, ZHANG C A, WANG P L, et al. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization[J]. Langmuir, 2012, 28(18): 7091-7095. doi: 10.1021/la204894h
    [8] SATTARI M, MOLAZEMHOSSEINI A, NAIMI-JAMAL M R, et al. Nonisothermal crystallization behavior and mechanical properties of PEEK/SCF/nano-SiO2 composites[J]. Materials Chemistry and Physics, 2014, 147(3): 942-953. doi: 10.1016/j.matchemphys.2014.06.041
    [9] 张文睿, 贾涵, 张鑫, 等. 超高分子量聚乙烯薄膜制备方法与应用[J]. 中国塑料, 2023, 37(5): 1-8.

    ZHANG Wenrui, JIA Han, ZHANG Xin, et al. Preparation and applications of ultrahigh molecular weight polyethylene films[J]. China Plastics, 2023, 37(5): 1-8(in Chinese).
    [10] GAO C H, REN X, ZHANG J, et al. Effect of magnesium hydroxide sulfate hydrate whisker on non-isothermal crystallization kinetics of poly(butylene succinate)[J]. Thermochimica Acta, 2018, 663: 9-18. doi: 10.1016/j.tca.2018.02.016
    [11] YARICI T, KODAL M, OZKOC G. Non-isothermal crystallization kinetics of poly(butylene succinate) (PBS) nanocomposites with different modified carbon nanotubes[J]. Polymer, 2018, 146: 361-377. doi: 10.1016/j.polymer.2018.05.060
    [12] 王福春, 王万坤, 刘伟, 等. 生物降解PBS/MMT共混体系结晶行为研究[J]. 塑料科技, 2018, 46(4): 80-88. doi: 10.15925/j.cnki.issn1005-3360.2018.04.013

    WANG Fuchun, WANG Wankun, LIU Wei, et al. Study on crystallization behavior of biodegradable PBS/MMT blends[J]. Plastics Science and Technology, 2018, 46(4): 80-88(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2018.04.013
    [13] ZHENG T, PILLA S. Melt processing of cellulose nanocrystal-filled composites: Toward reinforcement and foam nucleation[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8511-8531.
    [14] MIAO C W, HAMAD W Y. Cellulose reinforced polymer composites and nanocomposites: A critical review[J]. Cellulose, 2013, 20(5): 2221-2262. doi: 10.1007/s10570-013-0007-3
    [15] FERREIRA F V, DUFRESNE A, PINHEIRO I F, et al. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review[J]. European Polymer Journal, 2018, 108: 274-285. doi: 10.1016/j.eurpolymj.2018.08.045
    [16] ABUSHAMMALA H, MAO J. Impact of the surface properties of cellulose nanocrystals on the crystallization kinetics of poly(butylene succinate)[J]. Crystals, 2020, 10(3): 196. doi: 10.3390/cryst10030196
    [17] LI Y D, FU Q Q, WANG M, et al. Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation[J]. Carbohydrate Polymers, 2017, 164: 75-82. doi: 10.1016/j.carbpol.2017.01.089
    [18] ZHANG Y, CUI S Q, LIAO H, et al. Poly(butylene succinate)/cellulose composite monofilaments with microelastic response based on interfacial bonding[J]. Carbohydrate Polymers, 2023, 302: 120387. doi: 10.1016/j.carbpol.2022.120387
    [19] 中国国家标准化管理委员会. 聚丁二酸丁二酯: GB/T 30294—2013[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Poly(bsuccinate): GB/T 30294—2013[S]. Beijing: China Standards Press, 2014(in Chinese).
    [20] MATHEW A P, OKSMAN K, SAIN M. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid[J]. Journal of Applied Polymer Science, 2006, 101(1): 300-310. doi: 10.1002/app.23346
    [21] YUE T Q, WANG H B, FU Y, et al. Non-isothermal crystallization of titanium-dioxide-incorporated rice straw fiber/poly(butylene succinate) biocomposites[J]. Polymers, 2022, 14(7): 1479. doi: 10.3390/polym14071479
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  221
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-09-06
  • 录用日期:  2023-09-09
  • 网络出版日期:  2023-09-20
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回