留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用

徐诗琪 周洲 汤睿 江露莹 王俊辉 金学群 张菁玮 廖丹葵 童张法 张寒冰

徐诗琪, 周洲, 汤睿, 等. 高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用[J]. 复合材料学报, 2024, 41(3): 1347-1355. doi: 10.13801/j.cnki.fhclxb.20230912.003
引用本文: 徐诗琪, 周洲, 汤睿, 等. 高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用[J]. 复合材料学报, 2024, 41(3): 1347-1355. doi: 10.13801/j.cnki.fhclxb.20230912.003
XU Shiqi, ZHOU Zhou, TANG Rui, et al. Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1347-1355. doi: 10.13801/j.cnki.fhclxb.20230912.003
Citation: XU Shiqi, ZHOU Zhou, TANG Rui, et al. Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1347-1355. doi: 10.13801/j.cnki.fhclxb.20230912.003

高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用

doi: 10.13801/j.cnki.fhclxb.20230912.003
基金项目: 国家自然科学基金项目(52263029);广西自然科学基金项目(2021GXNSFAA220035;2020GXNSFAA297036);广西石化资源加工及过程强化技术重点实验室主任基金(2022Z005);钙基材料协同创新中心横向科研项目(GJZX2022-2)
详细信息
    通讯作者:

    张寒冰,博士,副教授,研究方向为环保材料制备及水污染修复 E-mail: 24346260@qq.com

  • 中图分类号: X703.1;TB332

Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation

Funds: National Natural Science Foundation of China (52263029); Natural Science Foundation of Guangxi (2021GXNSFAA220035; 2020GXNSFAA297036); Petrochemical Resources Processing and Process Reinforcement Technology Key Laboratory Project of Guangxi Province (2022Z005); Calcium-based Materials Co-innovation Center Horizontal Research Project (GJZX2022-2)
  • 摘要: 气凝胶具有高孔隙率和高吸附性的特点,因此在含油废水处理领域是一种具有前景的候选材料。目前,所报道的气凝胶仍存在机械强度不足、制作工艺复杂、制备成本高等问题,限制了气凝胶在油水分离领域的应用。膨润土(Bentonite,BT)具有价格低、来源丰富、机械性能优良等特点,能够有效地改善气凝胶的机械性能。本文通过简单的冷冻干燥-常温浸渍法,在羧基纤维素纳米纤维(Carboxycellulose nanofibres,CNF-C)与壳聚糖(Chitosan,CS)的交联网络上引入剥离膨润土(Exfoliated bentonite,BTex),合成了疏水的纳米纤维素-壳聚糖/剥离膨润土气凝胶(CNC/BTex)。制备出的CNC/BTex气凝胶表现出优异的疏水性能(水接触角高达133°);经过挤压后在5 s内可恢复形变,具有良好的力学性能;对不同油品(正己烷、环己烷、二氯甲烷、食用油和发动机油)的吸附容量为18.48~40.20 g·g−1不等。以二氯甲烷和环己烷为主要研究对象,经过5次循环使用后依然保持稳定的吸油性能(维持在原始吸附量的90%)。本文的工作为制备低成本、高性能的油水分离吸附材料提供了参考。

     

  • 图  1  剥离膨润土(BTex)、羧基纤维素纳米纤维(CNF-C)、壳聚糖(CS)及纳米纤维素-壳聚糖/剥离膨润土气凝胶 (CNC/BTex)的XRD图谱

    Figure  1.  XRD patterns of exfoliated bentonite (BTex), carboxycellulose nanofibers (CNF-C), chitosan (CS) and nanocellulose-chitosan/exfoliated bentonite aerogels (CNC/BTex)

    图  2  BTex、CNF-C、CS及CNC/BTex的FTIR图谱

    Figure  2.  FTIR spectra of BTex, CNF-C, CS and CNC/BTex

    图  3  CNF-C (a)、CS (b)、BTex (c)和CNC/BTex ((d)~(f))的SEM图像

    Figure  3.  SEM images of CNF-C (a), CS (b), BTex (c) and CNC/BTex ((d)-(f))

    图  4  CNC/BTex的N2吸附-脱附等温曲线(a)和孔径分布(b)

    STP—Standard temperature and pressure

    Figure  4.  N2 adsorption-desorption isothermal curves (a) and pore width distribution (b) of CNC/BTex

    图  5  油(用油红O染成红色)和水(用亚甲基染成蓝色)液滴在原始CNC/BTex (a)和CNC/BTex (b)气凝胶表面上的照片及CNC/BTex气凝胶的表面(c)和内部(d)的水接触角(WCA)

    Figure  5.  Photographs of oil (dyed red with Oil Red O) and water (dyed blue with methylene) droplets on the surface of original CNC/BTex (a) and CNC/BTex aerogel (b); Water contact angle (WCA) on the surface (c) and the interior (d) of CNC/BTex aerogel

    图  6  CNC/BTex在20%、40%及60%应变下(a) 及其在60%应变下20个循环的应力-应变曲线(b)

    Figure  6.  Stress-strain curves of CNC/BTex at 20%, 40% and 60% strain (a) and at 60% strain for 20 cycles (b)

    图  7  CNC/BTex受外力挤压(a)和去除外力回弹后的照片(b)

    Figure  7.  Photographs of CNC/BTex after extrusion (a) and rebound after removal of external forces (b)

    图  8  通过CNC/BTex气凝胶(用油红O染成红色的正己烷)去除水表面的机油

    Figure  8.  Removal of n-hexane on the surface of water by CNC/BTex aerogel (n-hexane dyed red with Oil Red O)

    图  9  CNC/BTex对各种油的吸附能力和挤压后的油残留量

    Figure  9.  Adsorption capacities of CNC/BTex for various oils and the residual amount of oil after squeezing

    图  10  通过手动挤压CNC/BTex释放正己烷((a), (b))和撤去外力后CNC/BTex回弹的照片(c)

    Figure  10.  Photographs of releasing n-hexane by hand squeezing CNC/BTex ((a), (b)) and CNC/BTex rebound after removal of external forces (c)

    图  11  CNC/BTex气凝胶对二氯甲烷和环己烷的循环使用性

    Figure  11.  Recyclability of CNC/BTex aerogels to dichloromethane and cyclohexane

    表  1  CNC/BTex与文献报道的多孔材料的比较

    Table  1.   Comparison of CNC/BTex with porous materials reported in the literature

    Material Preparation method Adsorption capacity/(g·g–1) Ref.
    Kapok/cellulose aerogel Freeze-drying 141.9 [12]
    Graphene oxide decorated polyacrylonitrile nanofiber/
    carbon nanotubes (PANF/CNTs) composite aerogel
    Freeze-drying and heat crosslinking 36.07-65.09 [35]
    Cellulose nanofiber-polydimethylsiloxane aerogel Directional freeze-drying, solution
    immersion and heat treatment
    24-48 [36]
    Graphene/chitosan composite aerogel Directional freeze-drying 18-45 [37]
    Stem fiber/chitosan composite aerogel Freeze-drying 12.34-21.85 [38]
    Chitosan-enhanced hydrophobic silica aerogel Sol-gel method and atmospheric
    drying method
    5-9 [39]
    Polydimethylsiloxane/SiO2 superhydrophobic rock wool Dipping 8-13 [40]
    CNC/BTex aerogel Freeze-drying 18.48-40.20 This study
    下载: 导出CSV
  • [1] 杨霄, 邵帅. 海岸带石油污染物自然衰减研究综述[J]. 应用海洋学学报, 2023, 42(2): 359-370. doi: 10.3969/J.ISSN.2095-4972.2023.02.018

    YANG Xiao, SHAO Shuai. Natural attenuation of petroleum pollutants in coastal zones: A review[J]. Journal of Applied Oceanographya, 2023, 42(2): 359-370(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2023.02.018
    [2] KALISZ S, KIBORT K, MIODUSKA J, et al. Waste management in the mining industry of metals ores, coal, oil and natural gas-A review[J]. Journal of Environmental Management, 2022, 304: 114239. doi: 10.1016/j.jenvman.2021.114239
    [3] YU L, HAN M, HE F. A review of treating oily wastewater[J]. Arabian Journal of Chemistry, 2017, 10: S1913-S1922. doi: 10.1016/j.arabjc.2013.07.020
    [4] WANG Q Z, LI Y. Facile and green fabrication of porous chitosan aerogels for highly efficient oil/water separation and metal ions removal from water[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109689. doi: 10.1016/j.jece.2023.109689
    [5] WU W Q, DU M, SHI H K, et al. Application of graphene aerogels in oil spill recovery: A review[J]. Science of the Total Environment, 2023, 856: 159107. doi: 10.1016/j.scitotenv.2022.159107
    [6] MA X, ZHOU S, LI J T, et al. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation[J]. Journal of Hazardous Materials, 2023, 454: 131397. doi: 10.1016/j.jhazmat.2023.131397
    [7] GAO J K, WANG J Q, CAI M M, et al. Advanced superhydrophobic and multifunctional nanocellulose aerogels for oil/water separation: A review[J]. Carbohydrate Polymers, 2023, 300: 120242. doi: 10.1016/j.carbpol.2022.120242
    [8] LIU C, LI Z Z, LI B, et al. Montmorillonite-based aerogels assisted environmental remediation[J]. Applied Clay Science, 2023, 236: 106887. doi: 10.1016/j.clay.2023.106887
    [9] XUE N, CUI H Z, DONG W C, et al. Multifunctional hydrophilic MXene/gelatin composite aerogel with vertically aligned channels for efficient sustainable solar water evaporation and oil/water separation[J]. Chemical Engineering Journal, 2023, 455: 140614. doi: 10.1016/j.cej.2022.140614
    [10] BARHOUM A, RASTOGI V K, MAHUR B K, et al. Nanocelluloses as new generation materials: Natural resources, structure-related properties, engineering nanostructures, and technical challenges[J]. Materials Today Chemistry, 2022, 26: 101247. doi: 10.1016/j.mtchem.2022.101247
    [11] 周红娟, 师文钊, 陆少锋, 等. 油水分离用纤维素基多孔复合材料研究现状[J]. 中国材料进展, 2023, 42(5): 391-397.

    ZHOU Hongjuan, SHI Wenzhao, LU Shaofeng, et al. Review on cellulose-based porous composite materials for oil-water separation[J]. Materials China, 2023, 42(5): 391-397(in Chinese).
    [12] ZHANG H M, ZHANG G R, ZHU H Q, et al. Multiscale kapok/cellulose aerogels for oil absorption: The study on structure and oil absorption properties[J]. Industrial Crops and Products, 2021, 171: 113902. doi: 10.1016/j.indcrop.2021.113902
    [13] 汤琦龙, 傅晶依, 窦信, 等. 改性壳聚糖磁性纳米材料的研究进展[J]. 复合材料学报, 2022, 39(3): 1017-1025.

    TANG Qilong, FU Jingyi, DOU Xin, et al. Research progress of modified chitosan magnetic nanomaterials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1017-1025(in Chinese).
    [14] DENG W F, TANG Y J, MAO J C, et al. Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels[J]. International Journal of Biological Macromolecules, 2021, 189: 890-899. doi: 10.1016/j.ijbiomac.2021.08.172
    [15] 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 40(12): 6740-6755.

    ZHANG Yishuo, ZHOU Zhongkui, LI Longxiang, et al. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite [J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755(in Chinese).
    [16] ORTIZ-RAMOS U, LEYVA-RAMOS R, MENDOZA-MENDOZA E, et al. Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite: Effect of operating conditions and adsorption mechanism[J]. Chemical Engineering Journal, 2022, 432: 134428. doi: 10.1016/j.cej.2021.134428
    [17] TANG R, XU S Q, HU Y, et al. Multifunctional nano-cellulose aerogel with anti-mold ability for efficient oil-water separation: Vital roles of magnetic exfoliated bentonite and polyethyleneimine[J]. Separation and Purification Technology, 2023, 314: 123557. doi: 10.1016/j.seppur.2023.123557
    [18] YANG X D, SHAO X Q, TONG J, et al. Removal of aqueous eriochrome blue-black R by novel Na-bentonite/hickory biochar composites[J]. Separation and Purification Technology, 2023, 311: 123209. doi: 10.1016/j.seppur.2023.123209
    [19] CHARTIER C, BUWALDA S, BERGHE H V D, et al. Tuning the properties of porous chitosan: Aerogels and cryogels[J]. International Journal of Biological Macromolecules, 2022, 202: 215-223. doi: 10.1016/j.ijbiomac.2022.01.042
    [20] PAK S, AHN J B, KIM H. High performance and sustainable CNF membrane via facile in-situ envelopment of hydrochar for water treatment[J]. Carbohydrate Polymers, 2022, 296: 119948. doi: 10.1016/j.carbpol.2022.119948
    [21] SALEH S, MOHAMMADNEJAD S, KHORGOOEI H, et al. Photooxidation/adsorption of arsenic (III) in aqueous solution over bentonite/chitosan/TiO2 heterostructured catalyst[J]. Chemosphere, 2021, 280: 130583. doi: 10.1016/j.chemosphere.2021.130583
    [22] TANG J Y, XIONG Y S, LI M X, et al. Hyperbranched polyethyleneimine-functionalised chitosan aerogel for highly efficient removal of melanoidins from wastewater[J]. Journal of Hazardous Materials, 2023, 447: 130731. doi: 10.1016/j.jhazmat.2023.130731
    [23] ZHANG Q, LU W, WU M Y, et al. Preparation and properties of cellulosenanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO): Application of CO2 absorption capacity and molecular dynamics simulation[J]. Journal of Environmental Management, 2022, 302: 114044. doi: 10.1016/j.jenvman.2021.114044
    [24] HONG H J, BAN G, KIM H S, et al. Fabrication of cylindrical 3D cellulose nanofibril (CNF) aerogel for continuous removal of copper (Cu2+) from wastewater[J]. Chemosphere, 2021, 278: 130288. doi: 10.1016/j.chemosphere.2021.130288
    [25] HUANG G F, LIU K, MUHAMMAD Y, et al. Integrating magnetized bentonite and pinecone-like BiOBr/BiOI step-scheme heterojunctions as novel recyclable photocatalyst for efficient antibiotic degradation[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 482-499. doi: 10.1016/j.jiec.2023.03.010
    [26] ZHAI X S, GAO S, XIANG Y M, et al. Cationized high amylose maize starch films reinforced with borax cross-linked nanocellulose[J]. International Journal of Biological Macromolecules, 2021, 193: 1421-1429. doi: 10.1016/j.ijbiomac.2021.10.206
    [27] WANG M Z, LI Y H, CUI M F, et al. Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites: Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2022, 611: 629-643. doi: 10.1016/j.jcis.2021.12.115
    [28] CHENG Y R, CHEN J, WANG T, et al. Magnetically-separable acid-resistant CoFe2O4@polymer@MIL-100 core-shell catalysts for the acetalization of benzaldehyde and methanol[J]. Journal of Colloid and Interface Science, 2023, 629: 571-581. doi: 10.1016/j.jcis.2022.09.004
    [29] 朱薇, 江坤, 游峰, 等. 三维立体介孔结构的海藻酸钠/氧化石墨烯复合气凝胶的制备及其对亚甲基蓝的吸附[J]. 复合材料学报, 2022, 39(5): 2215-2225.

    ZHU Wei, JIANG Kun, YOU Feng, et al. Preparation of 3-dimensional mesoporous sodium alginate/graphene oxide composite aerogel for adsorption of methylene blue[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2215-2225(in Chinese).
    [30] 翟俊俊, 赵思, 肖秦箭, 等. 生物质气凝胶的疏水改性及应用研究进展[J]. 材料导报, 2022, 36(23): 174-188.

    ZHAI Junjun, ZHAO Si, XIAO Qinjian, et al. Research progress on hydrophobic modification and application of biomass aerogels[J]. Materials Reports, 2022, 36(23): 174-188(in Chinese).
    [31] 范廷玉, 赵杰, 彭丹, 等. 植物纤维素基气凝胶吸油材料的制备及应用[J]. 材料导报, 2023, 37(16): 260-275.

    FAN Tingyu, ZHAO Jie, PENG Dan, et al. Preparation and application of plant cellulose-based aerogel for oil adsorption[J]. Materials Reports, 2023, 37(16): 260-275(in Chinese).
    [32] DONG X D, WAN B Q, ZHENG M S, et al. Versatile spider-web-like cross-linked polyimide aerogel with tunable dielectric permittivity for highly sensitive flexible sensors[J]. Chemical Engineering Journal, 2023, 465: 143034. doi: 10.1016/j.cej.2023.143034
    [33] 张林琳, 顾学林, 向笑笑, 等. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.

    ZHANG Linlin, GU Xuelin, XIANG Xiaoxiao, et al. Preparation of graphene-carboxymethyl cellulose composite aerogel and evaluation of oil absorption performance[J]. Journal of Materials Engineering, 2022, 50(9): 43-51(in Chinese).
    [34] 柳泽鑫, 顾学林, 陈爽, 等. 弹性石墨烯气凝胶的制备及对含油污水的吸附[J]. 精细化工, 2021, 38(10): 1996-2003. doi: 10.13550/j.jxhg.20210302

    LIU Zexin, GU Xuelin, CHEN Shuang, et al. Preparation of elastic graphene aerogel and its adsorption on oily waste water[J]. Fine Chemicals, 2021, 38(10): 1996-2003(in Chinese). doi: 10.13550/j.jxhg.20210302
    [35] MA W J, JIANG Z C, LU T, et al. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing[J]. Chemical Engineering Journal, 2022, 430(3): 132989.
    [36] QIAO A H, HUANG R L, PENKOVA A, et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation[J]. Separation and Purification Technology, 2022, 295: 121266. doi: 10.1016/j.seppur.2022.121266
    [37] HU J, ZHU J D, GE S Z, et al. Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation[J]. Surface and Coatings Technology, 2020, 385: 125361. doi: 10.1016/j.surfcoat.2020.125361
    [38] 祝金亮, 王雪枫, 何龙, 等. 超疏水型生物质复合气凝胶的制备及吸油性能评价[J]. 油田化学, 2023, 40(1): 143-148, 174.

    ZHU Jinliang, WANG Xuefeng, HE Long, et al. Preparation and oil absorption performance evaluation of superhydrophobic biomass composite[J]. Aerogels Oilfield Chemistry, 2023, 40(1): 143-148, 174(in Chinese).
    [39] 刘泽泓, 卞兆勇. 壳聚糖增强疏水性硅气凝胶的制备及其吸油性能研究[J]. 环境科学研究, 2023, 36(2): 354-362.

    LIU Zehong, BIAN Zhaoyong. Preparation and oil absorption properties of chitosan-enhanced hydrophobic silica aerogel[J]. Research of Environmental Sciences, 2023, 36(2): 354-362(in Chinese).
    [40] HAO W T, XU J, LI R, et al. Developing superhydrophobic rock wool for high-viscosity oil/water separation[J]. Chemical Engineering Journal, 2019, 368: 837-846. doi: 10.1016/j.cej.2019.02.161
    [41] 纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5758-5767.

    JI Haonan, YI Changfeng, XU Zushun, et al. Preparation of titanium dioxide/ZIF-8 composite superhydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5758-5767(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  165
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-08-16
  • 录用日期:  2023-08-25
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回