留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4-BiOBr/Graphene磁性气凝胶的构筑与Cr(VI)污水净化

铁伟伟 邱帅彪 王红霞 袁双义 董旭 何伟伟

铁伟伟, 邱帅彪, 王红霞, 等. Fe3O4-BiOBr/Graphene磁性气凝胶的构筑与Cr(VI)污水净化[J]. 复合材料学报, 2024, 41(4): 1987-1996. doi: 10.13801/j.cnki.fhclxb.20230911.001
引用本文: 铁伟伟, 邱帅彪, 王红霞, 等. Fe3O4-BiOBr/Graphene磁性气凝胶的构筑与Cr(VI)污水净化[J]. 复合材料学报, 2024, 41(4): 1987-1996. doi: 10.13801/j.cnki.fhclxb.20230911.001
TIE Weiwei, QIU Shuaibiao, WANG Hongxia, et al. Construction of magnetic Fe3O4-BiOBr/Graphene aerogel and Cr(VI) wastewater purification[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1987-1996. doi: 10.13801/j.cnki.fhclxb.20230911.001
Citation: TIE Weiwei, QIU Shuaibiao, WANG Hongxia, et al. Construction of magnetic Fe3O4-BiOBr/Graphene aerogel and Cr(VI) wastewater purification[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1987-1996. doi: 10.13801/j.cnki.fhclxb.20230911.001

Fe3O4-BiOBr/Graphene磁性气凝胶的构筑与Cr(VI)污水净化

doi: 10.13801/j.cnki.fhclxb.20230911.001
基金项目: 河南省国家级大学生创新创业训练项目 (202110480014);河南省高等学校青年骨干教师培养计划(2021GGJS145);河南省高等学校重点科研项目(22A430036)
详细信息
    通讯作者:

    铁伟伟,博士,副教授,研究方向为纳米光电材料 E-mail: tieww929@163.com

  • 中图分类号: O614.24+;TB333

Construction of magnetic Fe3O4-BiOBr/Graphene aerogel and Cr(VI) wastewater purification

Funds: National Innovation and Entrepreneurship Training Program for College Students of Henan Province (202110480014); Youth Backbone Teacher Funding Project in Universities of Henan Province (2021GGJS145); Key Scientific Research Project in Universities of Henan Province (22A430036)
  • 摘要: 为改善单一半导体粉体材料的光生电子-空穴分离和回收能力,基于功能协同效应,采用共沉淀法,将Fe3+/Fe2+盐在一定浓度的氨水作用下制备出纳米Fe3O4,并分散于含有溴化十六烷基三甲铵(CTAB)的正辛烷中,提供Br的同时,在室温下与水溶液中的硝酸铋和柠檬酸相互作用,利用非互溶体系,制备出Fe3O4-BiOBr;最后,将Fe3O4-BiOBr分散于含有赖氨酸的氧化石墨烯水溶液中,通过一步水热法合成Fe3O4-BiOBr协同修饰的磁性石墨烯气凝胶(Fe3O4-BiOBr/Graphene)。样品的晶体结构、形貌特征和催化活性通过XRD、Raman、XPS、SEM、TEM、UV-Vis光谱等综合测试技术进行了表征分析。Fe3O4-BiOBr/Graphene复合材料中的Fe3O4呈类球状,尺寸约10~25 nm,均匀镶嵌于BiOBr片层中间,并与石墨烯之间相互作用,整体呈现球-片-空洞构造。Fe3O4-BiOBr/Graphene复合材料显示出良好的可见光吸收性和Cr(VI)还原活性,30 min内可去除Cr(VI)至100%,高于单一组分的磁性Fe3O4,这可能与Fe3O4-BiOBr异质结构、石墨烯导电材料的引入及Fe3O4-BiOBr/Graphene三者之间良好的界面相互作用,有效地促进了光生电子与空穴的分离效率有关。

     

  • 图  1  Fe3O4-BiOBr/Graphene-1的宏观照片

    Figure  1.  Photographs of Fe3O4-BiOBr/Graphene-1

    图  2  Fe3O4 (a)、Fe3O4-BiOBr (b)和Fe3O4-BiOBr/Graphene-1 ((c), (d))的SEM图像

    Figure  2.  SEM images of Fe3O4 (a), Fe3O4-BiOBr (b) and Fe3O4-BiOBr/Graphene-1 ((c), (d))

    图  3  Fe3O4-BiOBr/Graphene-1的TEM图像

    Figure  3.  TEM image of Fe3O4-BiOBr/Graphene-1

    图  4  Fe3O4、BiOBr、Fe3O4-BiOBr和Fe3O4-BiOBr/Graphene-1的XRD图谱

    Figure  4.  XRD patterns of Fe3O4, BiOBr, Fe3O4-BiOBr and Fe3O4-BiOBr/Graphene-1

    图  5  氧化石墨烯(GO)和Fe3O4-BiOBr/Graphene-1的拉曼图谱

    Figure  5.  Raman spectra of graphene oxide (GO) and Fe3O4-BiOBr/Graphene-1

    图  6  Fe3O4、Fe3O4-BiOBr和Fe3O4-BiOBr/Graphene-1的XPS图谱(a)及Fe2p (b)和Bi4f (c)的XPS高分辨图谱

    Figure  6.  XPS spectra (a) and Fe2p (b), Bi4f (c) XPS high-resolution spectra of Fe3O4, Fe3O4-BiOBr and Fe3O4-BiOBr/Graphene-1

    图  7  Fe3O4、BiOBr、Fe3O4-BiOBr和Fe3O4-BiOBr/Graphene-1的UV-Vis DRS光谱图

    Figure  7.  UV-Vis DRS spectra of Fe3O4, BiOBr, Fe3O4-BiOBr and Fe3O4-BiOBr/Graphene-1

    图  8  Fe3O4-BiOBr/Graphene系列样品在模拟太阳光照射下对Cr(VI)的光催化活性曲线

    Figure  8.  Photocatalytic activity curves of Cr(VI) in the presence of series of Fe3O4-BiOBr/Graphene samples under sunlight irradiation

    Ct—Concentration of Cr(VI) at time t; C0—Initial concentration of Cr(VI)

    图  9  Fe3O4-BiOBr/Graphene-1的电子顺磁共振(ESR)图谱

    Figure  9.  Electron spin resonance (ESR) spectra of Fe3O4-BiOBr/Graphene-1

    图  10  Fe3O4和Fe3O4-BiOBr/Graphene-1的磁滞回线图谱

    Figure  10.  Hysteresis loop spectra of Fe3O4 and Fe3O4-BiOBr/Graphene-1

    图  11  Fe3O4、BiOBr、Fe3O4-BiOBr和Fe3O4-BiOBr/Graphene-1的瞬态光电流图谱

    Figure  11.  Photocurrent spectra of Fe3O4, BiOBr, Fe3O4-BiOBr and Fe3O4-BiOBr/Graphene-1

    图  12  模拟太阳光下Fe3O4-BiOBr/Graphene-1复合材料对污染物Cr(VI)的光催化还原示意图

    Figure  12.  Photocatalytic reduction mechanism of Fe3O4-BiOBr/Graphene-1 composite onto Cr(VI) under sunlight irradiation

    表  1  系列Fe3O4-BiOBr/Graphene气凝胶

    Table  1.   Series of Fe3O4-BiOBr/Graphene aerogel

    Sample Graphene
    oxide/(g·mL−1)
    Fe3O4-BiOBr/g
    Fe3O4-BiOBr/Graphene-1 4.2 0.40
    Fe3O4-BiOBr/Graphene-2 5.0 0.35
    Fe3O4-BiOBr/Graphene-3 5.0 0.40
    Fe3O4-BiOBr/Graphene-4 3.5 0.40
    下载: 导出CSV

    表  2  Fe3O4-BiOBr/Graphene-1气凝胶的物理性能

    Table  2.   Physical properties of Fe3O4-BiOBr/Graphene-1 aerogel

    Sample BET surface
    area/(m2·g−1)
    Pore size/
    nm (4 V/A
    by BET)
    Pore
    volume /
    (cm3·g−1)
    Porosity/
    %
    Fe3O4-BiOBr/
    Graphene-1
    47.8902 17.14143 0.205227 85.5914
    Note: BET—Brunauer-Emmett-Teller.
    下载: 导出CSV
  • [1] XU D, HUANG Y, MA Q, et al. A 3D porous structured cellulose nanofibrils-based hydrogel with carbon dots-enhanced synergetic effects of adsorption and photocatalysis for effective Cr(VI) removal [J]. Chemical Engineering Journal, 2023, 456: 141104.
    [2] LI L X, GAO H J, LIU G R, et al. Synthesis of carnation flower-like Bi2O2CO3 photocatalyst and its promising application for photoreduction of Cr(VI) [J]. Advanced Powder Technology, 2022, 33(3): 103481.
    [3] KE T L, GUO H G, ZHANG Y L, et al. Photoreduction of Cr(VI) in water using BiVO4-Fe3O4 nano-photocatalyst under visible light irradiation[J]. Environmental Science and Pollution Research, 2017, 24(36): 28239-28247.
    [4] BASALEH A, ISMAIL A A, MOHAMED R M. Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr(VI) photoreduction[J]. Journal of Alloys and Compounds, 2022, 927: 166988.
    [5] FENG Y B, JIANG X H, SUN L L, et al. Efficient degradation of tetracycline in actual water systems by 2D/1D g-C3N4-BiOBr Z-scheme heterostructure through a peroxymonosulfate-assisted photocatalytic process[J]. Journal of Alloys and Compounds, 2023, 938: 168698.
    [6] TIE W W, DU Z Y, YUE H W, et al. Self-assembly of carbon nanotube/graphitic-like flake-BiOBr nanocomposite with 1D/2D/3D heterojunctions for enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2020, 579: 862-871.
    [7] HUANG X, YAN X, XIA L, et al. A three-dimensional graphene/Fe3O4/carbon microtube of sandwich-type architecture with improved wave absorbing performance[J]. Scripta Materialia, 2016, 120: 107-111.
    [8] LI S, MA Q P, CHEN L, et al. Hydrochar-mediated photocatalyst Fe3O4-BiOBr@HC for highly efficient carbamazepine degradation under visible LED light irradiation[J]. Chemical Engineering Journal, 2022, 433: 134492.
    [9] XIE X, LIU Y G, DONG X X, et al. Synthesis and characterization of Fe3O4/BiOI n-p heterojunction magnetic photocatalysts [J]. Applied Surface Science, 2018, 455: 742-747.
    [10] LONG D, TU Y P, CHAI Y Q, et al. Photoelectrochemical assay based on SnO2-BiOBr p-n heterojunction for ultrasensitive DNA detection[J]. Analytical Chemistry, 2021, 93(38): 12995-13000.
    [11] ZHU L Y, LI H, LIU Z R, et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity[J]. Journal of Physical Chemistry C, 2018, 122(17): 9531-9539.
    [12] LIU X Y, YANG Z, ZHANG L. In-situ fabrication of 3D hierarchical flower-like β-Bi2O3@CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants[J]. Journal of Hazardous Materials, 2021, 403: 123566.
    [13] XU H F, XU Z C, ZHOU J, et al. Hydrothermal fabrication of BiOBr/magnetic reduced graphene oxide composites with efficient visible light photocatalytic activity[J]. Ceramics International, 2019, 45(12): 15458-15465.
    [14] SUN Y M, WU W D, ZHOU H F. Lignosulfonate-controlled BiOBr/C hollow microsphere photocatalyst for efficient removal of tetracycline and Cr(VI) under visible light[J]. Chemical Engineering Journal, 2023, 453: 139819.
    [15] YU X, SHI J J, FENG L J, et al. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Applied Surface Science, 2017, 396: 1775-1782.
    [16] LIU J H, WEI X N, SUN W Q, et al. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis[J]. Environmental Research, 2021, 197: 111136.
    [17] AN W J, YANG T, WANG Y S, et al. Adsorption and in-situ photocatalytic Fenton multifield coupled degradation of organic pollutants and coking wastewater via FeBiOBr modification of three-dimensional graphene aerogel[J]. Applied Surface Science, 2023, 610: 155495.
    [18] 智建辉, 师泽鹏, 孙小倩, 等. 杂化二氧化锰气凝胶的制备及其对氨气的吸附[J]. 中国环境科学, 2023, 43(7): 3368-3377.

    ZHI Jianhui, SHI Zepeng, SUN Xiaoqian, et al. Preparation of hybrid manganese dioxide aerogel and its application in ammonia adsorption[J]. China Environmental Science, 2023, 43(7): 3368-3377(in Chinese).
    [19] SHI Y Y, HU Y Y, WANG Y, et al. 3D N-doped graphene aerogel sponge-loaded CoS2 co-catalytic Fenton system for ciprofloxacin degradation[J]. Journal of Cleaner Production, 2022, 380: 135008.
    [20] LI S, WANG Z W, ZHAO X T, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4-BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600-611.
    [21] XIE X Y, LI S, QI K M, et al. Photoinduced synthesis of green photocatalyst Fe3O4-BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure[J]. Chemical Engineering Journal, 2021, 420: 129705.
    [22] REN X Z, SUN Y H, XING H, et al. Magnetically separable Fe3O4@C-BiOBr heterojunction for the enhanced visible light-driven photocatalytic performance[J]. Journal of Nanoparticle Research, 2018, 20(10): 268.
    [23] MENG H N, ZHANG Z Z, ZHAO F X, et al. Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation [J]. Applied Surface Science, 2013, 280: 679-685.
    [24] TIE W W, BHATTACHARYYA S S, HAN C C, et al. Green assembly of covalently linked BiOBr/graphene composites for efficient visible light degradation of dyes [J]. ACS Omega, 2022, 7(40): 35805-35813.
    [25] TIAN X K, WANG W W, TIAN N, et al. Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid[J]. Journal of Hazardous Materials, 2016, 309: 151-156.
    [26] 禹凡, 郑涛, 汤涛, 等. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(3): 139-145.

    YU Fan, ZHENG Tao, TANG Tao, et al. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater[J]. Journal of Textile Research, 2022, 43(3): 139-145(in Chinese).
    [27] 徐义邦, 樊孝俊, 龚娴. 二苯碳酰二肼分光光度法测定水中六价铬方法的改进[J]. 中国给水排水, 2015, 31(8): 106-108.

    XU Yibang, FAN Xiaojun, GONG Xian. Improvement of method for determination of chromium (VI) in water by 1, 5-diphenylcarbohydrazide spectrophotometry[J]. China Water & Wastewater, 2015, 31(8): 106-108(in Chinese).
    [28] LIU C, DONG X L, HAO Y C, et al. Efficient photocatalytic dye degradation over Er-doped BiOBr hollow microspheres wrapped with graphene nanosheets: Enhanced solar energy harvesting and charge separation[J]. RSC Advances, 2017, 7(36): 22415-22423.
    [29] CHEN T D, WANG J Q, WU X Z, et al. Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances[J]. Applied Surface Science, 2021, 566: 150719.
    [30] CHEN Y, SUN F Q, HUANG Z J, et al. Photochemical fabrication of SnO2 dense layers on reduced graphene oxide sheets for application in photocatalytic degradation of p-nitrophenol[J]. Applied Catalysis B: Environmental, 2017, 215: 8-17.
    [31] SONG N, FAN H Q, TIAN H L. Reduced graphene oxide/ZnO nanohybrids: Metallic Zn powder induced one-step synthesis for enhanced photocurrent and photocatalytic response[J]. Applied Surface Science, 2015, 353: 580-587.
    [32] YI X H, MA S Q, DU X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light [J]. Chemical Engineering Journal, 2019, 375: 121944.
    [33] VALIZADEH B, NGUYEN T N, KAMPOURI S, et al. A novel integrated Cr(VI) adsorption-photoreduction system using MOF@polymer composite beads[J]. Journal of Materials Chemistry A, 2020, 8(19): 9629-9637.
    [34] BHATI A, ANAND S R, SAINI D, et al. Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots[J]. NPJ Clean Water, 2019, 2(1): 12. doi: 10.1038/s41545-019-0036-z
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  160
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-08-18
  • 录用日期:  2023-08-29
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回