留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱处理对加捻竹纤维/环氧复合材料润湿性与拉伸失效的影响

顾少华 李昊远 张文福 王翠翠 李明鹏 程海涛 王戈

顾少华, 李昊远, 张文福, 等. 碱处理对加捻竹纤维/环氧复合材料润湿性与拉伸失效的影响[J]. 复合材料学报, 2024, 41(4): 1870-1878. doi: 10.13801/j.cnki.fhclxb.20230904.002
引用本文: 顾少华, 李昊远, 张文福, 等. 碱处理对加捻竹纤维/环氧复合材料润湿性与拉伸失效的影响[J]. 复合材料学报, 2024, 41(4): 1870-1878. doi: 10.13801/j.cnki.fhclxb.20230904.002
GU Shaohua, LI Haoyuan, ZHANG Wenfu, et al. Effect of alkali treatment on the wettability and tensile failure of twisted bamboo fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1870-1878. doi: 10.13801/j.cnki.fhclxb.20230904.002
Citation: GU Shaohua, LI Haoyuan, ZHANG Wenfu, et al. Effect of alkali treatment on the wettability and tensile failure of twisted bamboo fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1870-1878. doi: 10.13801/j.cnki.fhclxb.20230904.002

碱处理对加捻竹纤维/环氧复合材料润湿性与拉伸失效的影响

doi: 10.13801/j.cnki.fhclxb.20230904.002
基金项目: 国家自然科学基金(32371979);国家重点研发计划(2022YFD2200903)
详细信息
    通讯作者:

    程海涛,博士,研究员,博士生导师,研究方向为竹纤维复合材料 E-mail: htcheng@icbr.ac.cn

  • 中图分类号: TB332

Effect of alkali treatment on the wettability and tensile failure of twisted bamboo fiber/epoxy composites

Funds: National Natural Science Foundation of China (32371979); National Key R&D Program of China (2022YFD2200903)
  • 摘要: 采用加捻竹纤维(TBF)为增强相、环氧树脂-酸酐体系为基体相,制备加捻竹纤维/环氧树脂(TBF/EP)复合材料,通过改变NaOH溶液浓度(1wt%~5wt%),研究碱处理对TBF/EP复合材料润湿性和拉伸失效的影响。采用SEM、表面张力测试、原位加载等纳米和微观试验手段,对纤维-树脂结合状态、润湿性能和拉伸力学特性进行了分析。结果表明:碱处理降低了纤维表面能和极性,使TBF与基体润湿力从0.45 mN降至0.1 mN;3wt%NaOH溶液改性的TBF/EP复合材料含胶量降低至62%,拉伸强度(TS)达到273.70 MPa,比未处理复合材料提高178.64%;原位分析显示,TBF失效过程包括纤维断裂和纤维间滑移,而TBF/EP复合材料失效过程包括基体剪切屈服和纤维断裂,且随着浸润性提高,BF抑制屈服的效果增加。因此,TBF/EP复合材料的强度主要来源于纤维和界面的增强,受TBF与基体的浸润性、应力传递效果的影响。

     

  • 图  1  加捻竹纤维(TBF)的制备过程:(a) 竹材;(b) 竹条;(c) 竹纤维束;(d) 竹纤维(BF);(e) 加捻设备;(f) TBF;(g) TBF的SEM图像;(h) TBF制备示意图

    Figure  1.  Preparation process of twisted bamboo fiber (TBF): (a) Bamboo; (b) Bamboo strips; (c) Bamboo fiber bundles; (d) Bamboo fiber (BF); (e) Equipment of twisting; (f) TBF; (g) SEM image of TBF; (h) Schematic diagram of preparation of TBF

    图  2  TBF/环氧树脂(EP)复合材料的制备工艺

    Figure  2.  Preparation process of TBF/epoxy resin (EP) composite

    MeTHPA—Methyl tetrahydrophthalic anhydride

    图  3  TBF的润湿性测试模型

    Figure  3.  Wettability test model of TBF

    θF1, θF2, θF3, θF4, θF5—Different infiltration angles of the bamboo fiber units of TBF

    图  4  TBF的SEM图像:((a)~(c)) TBF;(d) 1wt%-TBF;(e) 2wt%-TBF;(f) 3wt%-TBF;((g)~(i)) 5wt%-TBF (NaOH溶液浓度:1wt%、2wt%、3wt%、5wt%)

    Figure  4.  SEM images of TBF: ((a)-(c)) TBF; (d) 1wt%-TBF; (e) 2wt%-TBF; (f) 3wt%-TBF; ((g)-(i)) 5wt%-TBF (NaOH solution concentrations: 1wt%, 2wt%, 3wt%, 5wt%)

    图  5  TBF/EP复合材料形态分析:((a)~(c)) 表面形态;((d)~(f)) 横截面;((g)~(i)) 横截面的黑白二值图

    Figure  5.  Morphological analysis of TBF/EP composites: ((a)-(c)) Surface morphology; ((d)-(f)) Cross section; ((g)-(i)) Black and white binary graph of cross section

    图  6  TBF的直径和含胶量

    Figure  6.  Diameter and resin amount of TBF

    图  7  (a) TBF在正己烷下的润湿力;(b) BF和TBF的表面能

    Figure  7.  (a) Wetting force of TBF under the n-hexane; (b) Surface energy of BF and TBF

    ΔSE—Difference of surface energy between BF and TBF; FF, θF—Balance force and contact angle during falling; FR, θR—Balance force and contact angle during rising

    图  8  TBF在EP基体中的动态润湿力

    Figure  8.  Dynamic wetting force of TBF under the EP matrix

    图  9  TBF的原位拉伸失效分析:((a), (b)) 拉伸力学;((c)~(f)) 0.05、0.10、0.20、0.22 mm时TBF拉伸形貌

    Figure  9.  In-situ tensile failure analysis of TBF: ((a), (b)) Tensile mechanics; ((c)-(f)) Tensile morphologies of TBF at 0.05, 0.10, 0.20 and 0.22 mm

    图  10  TBF/EP复合材料原位拉伸失效分析:((a), (b)) 拉伸强度;((c)~(f)) 0.05、0.10、0.24、0.25 mm时3wt%-TBF/EP复合材料拉伸形貌

    Figure  10.  In-situ tensile failure analysis of TBF/EP composite: ((a), (b) ) Tensile strength; ((c)-(f)) Tensile morphologies of 3wt%-TBF/EP composite at 0.05, 0.10, 0.24 and 0.25 mm

    表  1  TBF的基本性质

    Table  1.   Basic properties of TBF

    BFLength/cmWidth/mmThickness/mmStrength/MPa
    100.36-0.70.13-0.2180±16
    TBFDiameter/mmTensile/NLinear density/(g·m−1)Twist angle/(°)
    1.28±0.1248.81264
    下载: 导出CSV

    表  2  加捻竹纤维的接触角和表面能

    Table  2.   Contact angle and surface energy of TBF

    IndexWetting boundary/mmAdvancing contact angle/(°)Owens-Wendt worth/mNSurface energy/mN
    WaterEthylene glycolDiiodomethaneDispersionPolar
    0wt%21.9461.7548.5640.4822.4910.2332.72
    1wt%11.4661.6741.9644.3422.73 8.5131.24
    2wt%12.8661.9146.1247.1923.72 7.5831.30
    3wt%10.4264.7645.7054.5821.00 7.0928.08
    5wt%11.2669.9147.3059.0122.03 4.2126.23
    下载: 导出CSV
  • [1] BLLA V K, KATE K H, SATYAVOLU J, et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites Part B: Engineering,2019,174:106956. doi: 10.1016/j.compositesb.2019.106956
    [2] LI M, PU Y, THOMAS V M, et al. Recent advancements of plant-based natural fiber-reinforced composites and their applications[J]. Composites Part B: Engineering,2020,200(1):108254.
    [3] RADZI A M, ZAKI S A, HASSAN M Z, et al. Bamboo-fiber-reinforced thermoset and thermoplastic polymer composites: A review of properties, fabrication, and potential applications[J]. Polymers,2022,14(7):1387. doi: 10.3390/polym14071387
    [4] LIU M, XU J, FU T, et al. Investigations on the internal curing process and mechanical properties of winding composite considering the structure of plant fiber[J]. Journal of Applied Polymer Science,2020,137(37):49114. doi: 10.1002/app.49114
    [5] DUN M, HAO J, WANG W, et al. Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding[J]. Composites Part B: Engineering,2019,159(15):369-377.
    [6] CHEN M, WENG Y, SEMPLE K, et al. Sustainability and innovation of bamboo winding composite pipe products[J]. Renewable and Sustainable Energy Reviews,2021,144(16):110976.
    [7] WU Y, ZHENG Y, YANG F, et al. Preparation process and characterization of mechanical properties of twisted bamboo spun fiber bundles[J]. Journal of Materials Research and Technology,2021,14(1):2131-2139.
    [8] SHAH D U, SCHUBEL P J, LICENCE P, et al. Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites[J]. Composites Science and Technology,2012,72(15):1909-1917. doi: 10.1016/j.compscitech.2012.08.005
    [9] ZHANG W, WANG C, GU S, et al. Physical-mechanical properties of bamboo fiber composites using filament winding[J]. Polymers,2021,13(17):2913. doi: 10.3390/polym13172913
    [10] LEE C H, KHALINA A, LEE S H. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review[J]. Polymers,2021,13(3):438. doi: 10.3390/polym13030438
    [11] SHIH Y. Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites[J]. Materials Science & Engineering A,2007,445-446:289-295.
    [12] HUANG J K, YOUNG W B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites[J]. Composites Part B: Engineering,2019,166:272-283. doi: 10.1016/j.compositesb.2018.12.013
    [13] LEHTINIEMI P, DUFVA K, BERG T, et al. Natural fiber-based reinforcements in epoxy composites processed by filament winding[J]. Journal of Reinforced Plastics & Composites,2011,30(23):47-55.
    [14] ZAMRI M H, OSMAN M R, AKIL H M, et al. Development of green pultruded composites using kenaf fibre: Influence of linear mass density on weathering performance[J]. Journal of Cleaner Production,2016,125(1):320-330.
    [15] CHEN H, ZHANG W, WANG X, et al. Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers[J]. Journal of Wood Science,2018,64(4):398-405. doi: 10.1007/s10086-018-1713-0
    [16] WANG X, YUAN Z, ZHAN X, et al. Multi-scale characterization of the thermal-mechanically isolated bamboo fiber bundles and its potential application on engineered composites[J]. Construction and Building Materials,2020,262(10):120866.
    [17] FORTEA-VERDEJO M, BUMBARIS E, BURGSTALLER C, et al. Plant fibre-reinforced polymers: Where do we stand in terms of tensile properties?[J]. International Materials Reviews, 2017, 62(8): 441-464.
    [18] YAN L, CHOUW N, YUAN X. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment[J]. Journal of Reinforced Plastics & Composites, 2012, 31(6): 425-437.
    [19] BARTOS A, UTOMO B P, KANYAR B, et al. Reinforcement of polypropylene with alkali-treated sugarcane bagasse fibers: Mechanism and consequences[J]. Composites Science and Technology, 2020, 200(10): 108428.
    [20] KUSHWAHA P, KUMAR R. Enhanced mechanical strength of BFRP composite using modified bamboos[J]. Journal of Reinforced Plastics & Composites, 2009, 28(23): 2851-2859.
    [21] DUJARDIN N, FOIS M, GRIMAU M, et al. Soft interface dynamics in flax-fabrics/epoxy composites[J]. Composite Structures, 2018, 202(10): 89-96.
    [22] PUCCI M F, LIOTIER P, DRAPIER S. Capillary effects on flax fibers—Modification and characterization of the wetting dynamics[J]. Composites Part A: Applied and Manufacturing, 2015, 77: 257-265.
    [23] FUENTES C A, TRAN L Q N, DUPONT-GILLAIN C, et al. Wetting behaviour and surface properties of technical bamboo fibres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1-3): 89-99.
    [24] 顾少华, 陈季荷, 张文福, 等. 梯度结构对竹束纤维复合材料界面失效的影响[J]. 复合材料学报, 2022, 39(8):4065-4073.

    GU Shaohua, CHEN Jihe, ZHANG Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica,2022,39(8):4065-4073(in Chinese).
    [25] 江泽慧, 陈复明, 王戈, 等. 基于动态接触角分析的竹纤维表面能表征[J]. 北京林业大学学报, 2013, 35(3):6-9. doi: 10.13332/j.1000-1522.2013.03.006

    JIANG Zehui, CHEN Fuming, WANG Ge, et al. Surface energy characterization of bamboo fiber determined by dynamic contact angle analysis[J]. Journal of Beijing Forestry University,2013,35(3):6-9(in Chinese). doi: 10.13332/j.1000-1522.2013.03.006
    [26] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747. doi: 10.1002/app.1969.070130815
    [27] WEI X, WANG G, SMITH L M, et al. The hygroscopicity of moso bamboo (Phyllostachys edulis) with a gradient fiber structure[J]. Journal of Materials Research and Technology,2021,15:4309-4316. doi: 10.1016/j.jmrt.2021.10.038
    [28] CHEN H, WU J, SHI J, et al. Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber[J]. Industrial Crops and Products,2021,164(1):113380.
    [29] CHEN H, YU Y, ZHONG T, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers[J]. Cellulose,2017,24(1):333-347. doi: 10.1007/s10570-016-1116-6
    [30] HODGSON K, BERG J. Dynamic wettableility properties of single wood pulp fibers and their relationship to absorbency[J]. Wood & Fiber Science,1988,20(1):3-17.
    [31] CHOWDHURY M N K, BEG M D H, KHAN M R, et al. Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment[J]. Cellulose,2013,20(3):1477-1490. doi: 10.1007/s10570-013-9921-7
    [32] YOUNG R A. Wettability of wood pulp fibers: Applicability of methodology[J]. Wood and Fiber Science,1976,8:120-128.
    [33] QIU S, FUENTES C A, ZHANG D, et al. Wettability of a single carbon fiber[J]. Langmuir,2016,32(38):9697-9705. doi: 10.1021/acs.langmuir.6b02072
    [34] FUENTES C A, TRAN L Q N, VAN HELLEMONT M, et al. Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites[J]. Physicochemical and Engineering Aspects,2013,418:7-15. doi: 10.1016/j.colsurfa.2012.11.018
    [35] BAI T, WANG D, YAN J, et al. Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites[J]. Composites Science and Technology,2021,213:108951. doi: 10.1016/j.compscitech.2021.108951
    [36] MA Y, SHEN S, TONG J, et al. Effects of bamboo fibers on friction performance of friction materials[J]. Journal of Thermoplastic Composite Materials,2013,26(6):845-859. doi: 10.1177/0892705712461513
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  199
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-08-11
  • 录用日期:  2023-08-20
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回