留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丁二酸丁二醇酯对聚乳酸基木塑复合材料性能的影响

刘杰 赵雪松 李奇 韦东山 雷志涛 张志远

刘杰, 赵雪松, 李奇, 等. 聚丁二酸丁二醇酯对聚乳酸基木塑复合材料性能的影响[J]. 复合材料学报, 2024, 41(5): 2445-2454. doi: 10.13801/j.cnki.fhclxb.20230831.002
引用本文: 刘杰, 赵雪松, 李奇, 等. 聚丁二酸丁二醇酯对聚乳酸基木塑复合材料性能的影响[J]. 复合材料学报, 2024, 41(5): 2445-2454. doi: 10.13801/j.cnki.fhclxb.20230831.002
LIU Jie, ZHAO Xuesong, LI Qi, et al. Effect of polybutylene succinate on properties of polylactic acid-based wood-plastic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2445-2454. doi: 10.13801/j.cnki.fhclxb.20230831.002
Citation: LIU Jie, ZHAO Xuesong, LI Qi, et al. Effect of polybutylene succinate on properties of polylactic acid-based wood-plastic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2445-2454. doi: 10.13801/j.cnki.fhclxb.20230831.002

聚丁二酸丁二醇酯对聚乳酸基木塑复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20230831.002
基金项目: 内蒙古农业大学学科交叉基金项目(BR231403);内蒙古自治区科技计划项目(2021GG0075);国家自然科学基金(31660177)
详细信息
    通讯作者:

    李奇,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail: li_qi555@163.com;

    韦东山,博士,讲师,研究方向为植被配置与结构优化 E-mail: wdsh0812@sina.com

  • 中图分类号: TB332

Effect of polybutylene succinate on properties of polylactic acid-based wood-plastic composites

Funds: Interdisciplinary Research Fund Project of Inner Mongolia Agricultural University (BR231403); Science and Technology Plan Project of Inner Mongolia Autonomous Region (2021GG0075); National Natural Science Foundation of China (31660177)
  • 摘要: 为解决聚乳酸(PLA)基木塑复合材料制备成本高、韧性和耐热性差等问题,以可降解树脂聚丁二酸丁二醇酯(PBS)作为改性树脂,与沙柳木粉(WF)和PLA共混复合,通过模压法制备环境友好型PBS-WF/PLA三元可降解木塑复合材料。研究结果表明:PBS的加入,可使复合材料的韧性、耐热性及热稳定性提高,但强度和刚度下降。当PBS加入量为树脂总量的50wt%时,PBS-WF/PLA复合材料的综合性能相对较佳,与WF/PLA相比,生产成本降低约20%,PBS-WF/PLA的静曲强度、弹性模量和拉伸强度的保持率分别为86.5%、63.8%和73.1%,冲击强度提高40.1%,维卡软化温度、热变形温度和第二阶段热分解起始温度分别升高37.1℃、53.7℃和4.1℃。

     

  • 图  1  PBS-WF/PLA复合材料的制备流程图

    Figure  1.  Flow chart of preparation of PBS-WF/PLA composites

    图  2  PBS加入量对PBS-WF/PLA复合材料力学性能的影响

    Figure  2.  Effect of PBS content on mechanical properties of PBS-WF/PLA composites

    图  3  PBS加入量对PBS-WF/PLA复合材料的储能模量和损耗模量的影响

    Figure  3.  Effect of PBS content on storage modulus and loss modulus of PBS-WF/PLA composites

    图  4  PBS加入量对PBS-WF/PLA复合材料维卡软化温度和热变形温度的影响

    Figure  4.  Effect of PBS content on Vicat softening temperature and thermal deformation temperature of PBS-WF/PLA composites

    图  5  不同PBS加入量PBS-WF/PLA复合材料的TG曲线

    Figure  5.  TG curves of PBS-WF/PLA composites with different PBS contents

    图  6  纯PLA、纯PBS和不同PBS加入量下PBS-WF/PLA样品的冲击断面微观形貌

    Figure  6.  Microstructure of impact fracture surface of pure PLA, pure PBS and PBS-WF/PLA samples with different PBS additions

    表  1  聚丁二酸丁二醇酯(PBS)-沙柳木粉(WF)/聚乳酸(PLA)复合材料配方

    Table  1.   Formula of polybutylene succinate (PBS)-Salix powder (WF)/polylactic acid (PLA) composites

    Sample PBS/
    wt%
    PLA/
    wt%
    WF/
    wt%
    KH-550/
    wt%
    Stearic
    acid/wt%
    PBS-WF/PLA 0 100 50 3 0.6
    10 90 50 3 0.6
    20 80 50 3 0.6
    30 70 50 3 0.6
    40 60 50 3 0.6
    50 50 50 3 0.6
    100 0 50 3 0.6
    Note: KH-550—γ-aminopropyltriethoxysilane.
    下载: 导出CSV

    表  2  PBS加入量对PBS-WF/PLA复合材料的损耗模量特征值的影响

    Table  2.   Effect of PBS content on the loss modulus of PBS-WF/PLA composites

    PBS/wt%Maximum internal friction/MPaInternal friction peak temperature/℃
    0 897.6 60.6
    10 721.7 60.1
    20 572.8 60.0
    30 474.7 59.6
    40 407.8 59.5
    50 332.0 59.4
    100
    下载: 导出CSV

    表  3  PBS-WF/PLA复合材料的TG曲线特征值

    Table  3.   Characteristic value of TG curve of PBS-WF/PLA composites

    PBS/
    wt%
    Initial temperature
    of the second stage of
    mass loss/℃
    Mass loss
    termination
    temperature/℃
    Total mass
    loss rate/%
    0 320.0 366.8 86.3
    10 320.9 367.9 87.9
    20 321.8 369.1 87.4
    30 322.5 372.3 87.0
    40 322.9 380.0 86.7
    50 324.1 388.5 86.6
    100 346.2 406.0 90.7
    下载: 导出CSV
  • [1] 斯泽泽, 曹积微, 盛清泉, 等. 可生物降解木塑复合材料的国内外研究进展[J]. 安徽农业科学, 2016, 44(2):101-103. doi: 10.3969/j.issn.0517-6611.2016.02.036

    SI Zeze, CAO Jiwei, SHENG Qingquan, et al. Research progress of biodegradable wood-plastic composite at home and abroad[J]. Journal of Anhui Agricultural Science,2016,44(2):101-103(in Chinese). doi: 10.3969/j.issn.0517-6611.2016.02.036
    [2] RADOOR S, KARAYIL J, RANGAPPA S M, et al. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix[J]. Express Polymer Letters,2020,14(4):309-335. doi: 10.3144/expresspolymlett.2020.27
    [3] 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6):155-164. doi: 10.19491/j.issn.1001-9278.2022.06.024

    SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites[J]. China Plastics,2022,36(6):155-164(in Chinese). doi: 10.19491/j.issn.1001-9278.2022.06.024
    [4] 董倩倩, 李凯夫, 蔡奇龙, 等. 3D打印用聚乳酸/松木粉/纳米二氧化硅木塑复合材料性能研究[J]. 塑料科技, 2019, 47(1):85-89.

    DONG Qianqian, LI Kaifu, CAI Qilong, et al. Properties of PLA/PWF/nano-SiO2wood-plastic composites for 3D printing[J]. Plastics Science and Technology,2019,47(1):85-89(in Chinese).
    [5] 刘庆伦, 冯嫦. 环保型木塑材料成型工艺与影响因素分析[J]. 现代盐化工, 2022, 49(5):41-43. doi: 10.19465/j.cnki.2095-9710.2022.05.013

    LIU Qinglun, FENG Chang. Analysis on the molding technology and influencing factors of environmental friendly wood-plastic materials[J]. Modern Salt and Chemical Industry,2022,49(5):41-43(in Chinese). doi: 10.19465/j.cnki.2095-9710.2022.05.013
    [6] LI X R, YU J M, MENG L Y, et al. Study of PLA-based wood-plastic composites[J]. Journal of Physics: Conference Series,2023,2437(1):012029. doi: 10.1088/1742-6596/2437/1/012029
    [7] 王妮. 麻秆粉/聚乳酸木塑复合材料的制备与性能研究[D]. 天津: 天津工业大学, 2019.

    WANG Ni. Preparation and properties of hemp stalk powder/polylactic acid wood-plastic composites[D]. Tianjin: Tianjin University of Technology, 2019(in Chinese).
    [8] 王春红, 王利剑, 左恒峰, 等. 可生物降解聚乳酸的增韧改性及性能研究[J]. 汽车安全与节能学报, 2019, 10(4):511-517. doi: 10.3969/j.issn.1674-8484.2019.04.013

    WANG Chunhong, WANG Lijian, ZUO Hengfeng, et al. Study on toughening modification and properties of biodegradable polylactic acid[J]. Journal of Automotive Safety and Energy Saving,2019,10(4):511-517(in Chinese). doi: 10.3969/j.issn.1674-8484.2019.04.013
    [9] 司丹鸽. 秸秆粉/聚乳酸木塑复合材料的制备及改性研究[D]. 西安: 陕西科技大学, 2018.

    SI Dange. Study on preparation and modification of straw flour/poly(lactic acid) composite materials[D]. Xi'an: Shaanxi University of Science and Technology, 2018(in Chinese).
    [10] 高华朋. 可降解沙柳/PLA保温材料制备工艺及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2020.

    GAO Huapeng. Study on the preparation technology and properties of degradable Salix/PLA thermal insulation composites[D]. Hohhot: Inner Mongolia Agricultural University, 2020(in Chinese).
    [11] SABIROVA G A, SAFIN R R, GALYAVETDINOV N R, et al. Research of biodegradable wood completed composite materials based on polylactide[J]. Journal of Physics: Conference Series,2019,1399(4):044117. doi: 10.1088/1742-6596/1399/4/044117
    [12] 刁晓倩, 翁云宣, 宋鑫宇, 等. 国内外生物降解塑料产业发展现状[J]. 中国塑料, 2020, 34(5):123-135. doi: 10.19491/j.issn.1001-9278.2020.05.019

    DIAO Xiaoqian, WENG Yunxuan, SONG Xinyu, et al. Current development situation of biodegradable plastic industry in China and abroad[J]. China Plastics,2020,34(5):123-135(in Chinese). doi: 10.19491/j.issn.1001-9278.2020.05.019
    [13] 杜德焰, 钟培金, 杨艳, 等. 纤维/聚乳酸复合材料的研究进展[J]. 广州化学, 2019, 44(4):69-75. doi: 10.16560/j.cnki.gzhx.20190402

    DU Deyan, ZHONG Peijin, YANG Yan, et al. Progress of fiber reinforced polylactic acid composites[J]. Guangzhou Chemistry,2019,44(4):69-75(in Chinese). doi: 10.16560/j.cnki.gzhx.20190402
    [14] ZHAO X P, HU H, WANG X, et al. Super tough poly(lactic acid) blends: A comprehensive review[J]. RSC Advances,2020,10(22):13316-13368.
    [15] 王纲, 杨卓妮, 曾静, 等. 聚丁二酸丁二醇酯的改性研究及产业化现状[J]. 广东化工, 2021, 48(15):96-97, 119. doi: 10.3969/j.issn.1007-1865.2021.15.036

    WANG Gang, YANG Zhuoni, ZENG Jing, et al. Modification research and industrialization status of poly(butylene succinate)[J]. Guangdong Chemical Industry,2021,48(15):96-97, 119(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.15.036
    [16] 酒巧娜, 卢玉献. PBS对两种新型聚乳酸复合材料性能的影响[J]. 山东化工, 2018, 47(18):22-23, 26. doi: 10.3969/j.issn.1008-021X.2018.18.009

    JIU Qiaona, LU Yuxian. Effect of PBS on the properties of two new polylactic acid composites[J]. Shandong Chemical Industry,2018,47(18):22-23, 26(in Chinese). doi: 10.3969/j.issn.1008-021X.2018.18.009
    [17] 许凤, JONES-GWYNN L L, 孙润仓. 速生灌木沙柳的纤维形态及解剖结构研究[J]. 林产化学与工业, 2006, 26(1):91-94. doi: 10.3321/j.issn:0253-2417.2006.01.022

    XU Feng, JONES-GWYNN L L, SUN Runcang. Fibre morphology and anatomical structure of sandlive willow (Salix psammophila)[J]. Chemistry and Industry of Forest Products,2006, 26(1):91-94(in Chinese). doi: 10.3321/j.issn:0253-2417.2006.01.022
    [18] 中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法: GB/T 17657—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People's Republic of China. Test method for physical and chemical properties of wood-based panels and decorative wood-based panels: GB/T 17657—2013[S]. Beijing: China Standard Press, 2013(in Chinese).
    [19] 中国国家标准化管理委员会. 塑料拉伸性能的测定 第4部分: 各向同性和正交各向异性纤维增强复合材料的试验条件: GB/T 1040. 4—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Determination of tensile properties of plastics. Part 4: Test conditions for isotropic and orthotropic fiber reinforced composites: GB/T 1040.4—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
    [20] 中国国家标准化管理委员会. 塑料简支梁冲击性能的测定 第1部分: 非仪器化冲击试验: GB/T 1043. 1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Determination of impact properties of plastic simply supported beams. Part 1: Non-instrumented impact test: GB/T 1043.1—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [21] 国家质量技术监督局. 热塑性塑料维卡软化温度(VST)的测定: GB/T 1633—2000[S]. 北京: 中国标准出版社, 2000.

    National Bureau of Quality and Technical Supervision. Determination of Vicat softening temperature (VST) of thermoplastics: GB/T 1633—2000[S]. Beijing: China Standard Press, 2000(in Chinese).
    [22] 中国国家标准化管理委员会. 塑料负荷变形温度的测定 第2部分: 塑料、硬橡胶和长纤维增强复合材料: GB/T 1634.2—2004[S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People's Republic of China. Determination of load-deformation temperature of plastics. Part 2: Plastics, hard rubber and long fiber reinforced composites: GB/T 1634.2—2004[S]. Beijing: China Standard Press, 2004(in Chinese).
    [23] 付蕾, 张利超, 尹红艳, 等. 加料顺序对PLA/PBS/PEG共混物的力学性能及耐热性影响[J]. 工程塑料应用, 2022, 50(3):80-85. doi: 10.3969/j.issn.1001-3539.2022.03.014

    FU Lei, ZHANG Lichao, YIN Hongyan, et al. Effect of feeding sequence on mechanical properties and heat resistance of PLA/PBS/PEG blends[J]. Engineering Plastics Application,2022,50(3):80-85(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.03.014
    [24] 刘洒文. 聚乳酸/聚丁二酸丁二醇酯共混增容改性研究[D]. 武汉: 武汉理工大学, 2020.

    LIU Sawen. Study on blending modification of polylactic acid/polybutylene succinate[D]. Wuhan: Wuhan University of Technology, 2020(in Chinese).
    [25] 王广静, 徐长妍, 朱赛玲, 等. 椰枝纤维基木塑复合材料的动态机械分析[J]. 塑料工业, 2014, 42(5):62-66. doi: 10.3969/j.issn.1005-5770.2014.05.015

    WANG Guangjing, XU Changyan, ZHU Sailing, et al. Dynamic mechanical properties of coconut palm petiole fiber/wood plastic composites[J]. China Plastics Industry,2014,42(5):62-66(in Chinese). doi: 10.3969/j.issn.1005-5770.2014.05.015
    [26] RAGHU M J, GOUD G. Development of Calotropis procera-glass fibers reinforced epoxy hybrid composites: Dynamic mechanical properties[J]. Journal of Natural Fibers,2022,19(2):395-402. doi: 10.1080/15440478.2020.1745119
    [27] 周承波. 聚乳酸冷结晶行为的研究[D]. 天津: 天津大学, 2017.

    ZHOU Chengbo. Study on cold crystallization behavior of poly(lactic acid)[D]. Tianjin: Tianjin University, 2017(in Chinese).
    [28] 姚奕强. 聚乳酸基纤维增强复合材料的制备及其性能研究[D]. 无锡: 江南大学, 2022.

    YAO Yiqiang. Preparation and properties of fiber reinforced polylactide composites[D]. Wuxi: Jiangnan University, 2022(in Chinese).
    [29] 郝明洋. 原位反应加工制备聚乳酸/剑麻纤维复合材料及其结构与性能研究[D]. 广州: 华南理工大学, 2018.

    HAO Mingyang. Preparation of polylactide/sisal fibers biocomposites via in-situ reaction processing and investigation on its structure and properties[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
    [30] 李因文, 徐守芳, 马登学. 以玻璃化转变温度串联的高分子物理教学探究[J]. 高分子通报, 2020(9):74-78.

    LI Yinwen, XU Shoufang, MA Dengxue. Study of the glass transition temperature (Tg) as the series connection in polymer physics teaching[J]. Polymer Bulletin,2020(9):74-78(in Chinese).
    [31] 余秋豪, 单海霞, 黄宏魏, 等. 聚乳酸/聚丁二酸丁二醇酯/二苯基甲烷二异氰酸酯共混体系的结构与性能[J]. 高分子材料科学与工程, 2020, 36(3):59-65, 72. doi: 10.16865/j.cnki.1000-7555.2020.0019

    YU Qiuhao, SHAN Haixia, HUANG Hongwei, et al. Structure and performance of polylactic acid/poly(butyric acid butyl glycol ester)/diphenylmethane diisocyanate mixing system[J]. Polymer Materials Science and Engineering,2020,36(3):59-65, 72(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0019
    [32] 张晓娜. 亚胺型与对苯二酚型液晶环氧树脂合成与固化动力学[D]. 保定: 河北大学, 2009.

    ZHANG Xiaona. Synthysis and cure kinetics of imine and 1, 4-dihydroxy-benzene liquid crystalline epoxy resins[D]. Baoding: Hebei University, 2009(in Chinese).
    [33] 杨皓然, 张荣希, 段同生, 等. 高韧耐热PLA/PBS共混材料的制备及性能[J]. 工程塑料应用, 2022, 50(6):25-30. doi: 10.3969/j.issn.1001-3539.2022.06.005

    YANG Haoran, ZHANG Rongxi, DUAN Tongsheng, et al. Preparation and properties of PLA/PBS blends with high toughness and heat resistance[J]. Engineering Plastics Application,2022,50(6):25-30(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.06.005
    [34] 李翔宇, 郭宇芳, 张清清, 等. PEG对PLA/PBS共混物结构与性能的影响[J]. 塑料, 2019, 48(6):46-50, 61.

    LI Xiangyu, GUO Yufang, ZHANG Qingqing, et al. Effect of PEG on microstructure and properties of PLA/PBS blend[J]. Plastics,2019,48(6):46-50, 61(in Chinese).
    [35] YOKOHARA T, YAMAGUCHI M. Structure and properties for biomass-based polyester blends of PLA and PBS[J]. European Polymer Journal,2008,44(3):677-685. doi: 10.1016/j.eurpolymj.2008.01.008
    [36] 胡建鹏, 郭明辉. 木质素磺酸铵对聚乳酸/木纤维可生物降解复合材料力学与热性能的影响[J]. 复合材料学报, 2015, 32(3):657-664. doi: 10.13801/j.cnki.fhclxb.20140718.001

    HU Jianpeng, GUO Minghui. Influence of ammonium lignosulphonate on mechanical and thermal properties of polylactic acid/wood fiber biodegradable composites[J]. Acta Materiae Compositae Sinica,2015,32(3):657-664(in Chinese). doi: 10.13801/j.cnki.fhclxb.20140718.001
    [37] LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science,2008,33(8):820-852. doi: 10.1016/j.progpolymsci.2008.05.004
    [38] 郑茜仁. 竹纤维/PLA/PBS复合材料的制备及性能研究[D]. 杭州: 浙江理工大学, 2022.

    ZHENG Qianren. Preparation and properties of bamboo fiber/PLA/PBS composites[D]. Hangzhou: Zhejiang Polytechnic University, 2022(in Chinese).
    [39] CHUAYJULJIT S, WONGWAIWATTANAKUL C, CHAIWUTTHINAN P, et al. Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: Physical and morphological properties[J]. Polymer Composites,2017,38(12):2841-2851. doi: 10.1002/pc.23886
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  150
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-06
  • 修回日期:  2023-08-03
  • 录用日期:  2023-08-20
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回