留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性BN-Si-B/环氧树脂复合材料的制备及绝缘性能

陈昊 黄紫微 赵伟 宋吉祥 周昱 林晓艺 翁凌

陈昊, 黄紫微, 赵伟, 等. 改性BN-Si-B/环氧树脂复合材料的制备及绝缘性能[J]. 复合材料学报, 2024, 41(5): 2490-2499. doi: 10.13801/j.cnki.fhclxb.20230825.005
引用本文: 陈昊, 黄紫微, 赵伟, 等. 改性BN-Si-B/环氧树脂复合材料的制备及绝缘性能[J]. 复合材料学报, 2024, 41(5): 2490-2499. doi: 10.13801/j.cnki.fhclxb.20230825.005
CHEN Hao, HUANG Ziwei, ZHAO Wei, et al. Preparation and insulating properties of modified BN-Si-B/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2490-2499. doi: 10.13801/j.cnki.fhclxb.20230825.005
Citation: CHEN Hao, HUANG Ziwei, ZHAO Wei, et al. Preparation and insulating properties of modified BN-Si-B/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2490-2499. doi: 10.13801/j.cnki.fhclxb.20230825.005

改性BN-Si-B/环氧树脂复合材料的制备及绝缘性能

doi: 10.13801/j.cnki.fhclxb.20230825.005
详细信息
    通讯作者:

    陈昊,博士,讲师,硕士生导师,研究方向为绝缘材料的研制、性能与应用 E-mail: chenhao1982@126.com

  • 中图分类号: TB332

Preparation and insulating properties of modified BN-Si-B/epoxy resin composites

  • 摘要: 电晕放电会影响电气设备的稳定运行和使用寿命,因此提高绝缘材料的耐电晕性能对于保证电气设备的正常运行具有重要意义。本文利用硅烷偶联剂改性氮化硼(BN)制备改性BN (fBN),并将其与分散剂(有机硅硼复合氧化物(Si-B))共混对环氧树脂(EP)进行了改性。采用共混法和热固法制备了不同fBN含量的fBN-Si-B/EP复合材料,提高了环氧树脂的耐电晕寿命。实验结果表明:在30℃和30 kV·mm−1电场强度下,fBN-Si-B/EP复合材料的耐电晕寿命最高可达114.8 h,是纯环氧树脂5.01倍。随着fBN掺杂量的增加,fBN-Si-B/EP复合材料的介电常数呈现增加的趋势。同时,该复合材料的体积电阻率和击穿场强则表现出先降低后增加的趋势。少量fBN的加入可以降低复合材料的相对介电常数,抑制介电损耗增加。虽然fBN-Si-B/EP复合材料的击穿场强和体积电阻率略微降低,体积电阻率极小值为6.65×1014 Ω·cm,击穿场强极小值为24.04 kV·mm−1,但仍具有较好的绝缘性能。

     

  • 图  1  氮化硼(BN)和硅烷偶联剂改性氮化硼(fBN)的XRD图谱

    Figure  1.  XRD patterns of boron nitride (BN) and treating boron nitride with a silane coupling agent (fBN)

    图  2  Si-B合成(a)与KH-550改性BN示意图(b)

    Figure  2.  Schematic diagram of organosilicon boron composite oxide (Si-B) synthesis (a) and KH-550 modified BN (b)

    图  3  苯基三乙氧基硅烷、硼酸三丁酯和Si-B的傅里叶红外图谱

    Figure  3.  FTIR spectra of phenyltriethoxysilane, tributyl borate and Si-B

    图  4  BN和fBN的傅里叶红外图谱

    Figure  4.  FTIR spectra of BN and fBN

    图  5  0.1wt%BN-Si-B/EP (a)、1.0wt%BN-Si-B/EP (b)、0.1wt%fBN-Si-B/EP (c)、1.0wt%fBN-Si-B/EP (d)复合材料的断面SEM图像

    EP—Epoxy resin

    Figure  5.  SEM images of fracture surface of 0.1wt%BN-Si-B/EP (a), 1.0wt%BN-Si-B/EP (b), 0.1wt%fBN-Si-B/EP (c), 1.0wt%fBN-Si-B/EP (d) composites

    图  6  fBN-Si-B/EP复合材料的耐电晕寿命

    Figure  6.  Corona resistance life of fBN-Si-B/EP composites

    图  7  fBN-Si-B/EP复合材料的电晕击穿示意图

    Figure  7.  Schematic diagram of corona breakdown of fBN-Si-B/EP composites

    图  8  纯EP ((a), (b))、0.1wt%fBN-Si-B/EP (c)、1.0wt%fBN-Si-B/EP (d)复合材料电晕击穿点附近形貌

    Figure  8.  Morphologies near the corona breakdown point of pure EP ((a), (b)), 0.1wt%fBN-Si-B/EP (c), 1.0wt%fBN-Si-B/EP (d) composites

    图  9  fBN-Si-B/EP复合材料的体积电阻率

    Figure  9.  Volume resistivity of fBN-Si-B/EP composites

    图  10  fBN-Si-B/EP复合材料的介电常数

    Figure  10.  Dielectric constant of fBN-Si-B/EP composites

    图  11  fBN-Si-B/EP复合材料的介电损耗

    Figure  11.  Dielectric loss of fBN-Si-B/EP composites

    图  12  fBN-Si-B/EP复合材料的击穿场强威布尔分布

    P—Probability of composites breakdown

    Figure  12.  Weibull distribution of breakdown strength for fBN-Si-B/EP composites

    表  1  fBN-Si-B/EP复合材料的威布尔击穿强度(E0)和形状参数(β)

    Table  1.   Weibull breakdown strength (E0) and shape parameter (β) for fBN-Si-B/EP composites

    fBN content/wt%E0/(kV·mm−1)β
    0.035.3213.08
    0.126.2617.36
    0.326.12 9.19
    0.524.0412.94
    0.726.2818.15
    1.029.1517.34
    下载: 导出CSV
  • [1] YANG H D, CHEN Q G, WANG X Y, et al. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper[J]. Polymers,2019,11(8):1359-1372. doi: 10.3390/polym11081359
    [2] YAO T, CHEN K, SHAO T, et al. Nano-BN encapsulated micro-AlN as fillers for epoxy composites with high thermal conductivity and sufficient dielectric breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(2):528-534. doi: 10.1109/TDEI.2020.008606
    [3] LI S T, YIN G L, CHEN G, et al. Short-term breakdown and long-term failure in nanodielectrics: A review[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(5):1523-1535. doi: 10.1109/TDEI.2010.5595554
    [4] NAZIR M T, PHUNG B T, YU S H, et al. Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(2):657-667. doi: 10.1109/TDEI.2018.006914
    [5] ZHAO W, CHEN H, FAN Y, et al. Effect of size and content of SiO2 nanoparticle on corona resistance of silicon-boron composite oxide/SiO2/epoxy composite[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(11):4753-4763. doi: 10.1007/s10904-020-01733-0
    [6] ZHAO W, FAN Y, CHEN H. Dielectric properties and corona resistance of Si-B/epoxy nano-composites[J]. Journal of Materials Science: Materials in Electronics,2019,30(17):16298-16307. doi: 10.1007/s10854-019-02000-w
    [7] LAO J P, XIE H A, SHI Z Q, et al. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):7151-7158.
    [8] WANG D Z, WEI H, LIN Y, et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler-filler interface engineering[J]. Composites Science and Technology,2021,213:108953. doi: 10.1016/j.compscitech.2021.108953
    [9] LEE D J, LEE S Y, BYUN S, et al. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging[J]. Composites Part A: Applied Science and Manufacturing,2018,107:217-223. doi: 10.1016/j.compositesa.2018.01.009
    [10] KIM K, KIM M, HWANG Y, et al. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity[J]. Ceramics International,2014,40(1):2047-2056. doi: 10.1016/j.ceramint.2013.07.117
    [11] LI G H, MA Y J, XU H Y, et al. Hydroxylated hexagonal boron nitride nanoplatelets enhance the mechanical and tribological properties of epoxy-based composite coatings[J]. Progress in Organic Coatings,2022,165:106731. doi: 10.1016/j.porgcoat.2022.106731
    [12] ZHAO W, CHEN H, FAN Y, et al. The influences of different size SiO2 nanoparticles on dielectric properties and corona resistance of epoxy composites[J]. Polymers for Advanced Technologies,2020,31(12):3070-3078. doi: 10.1002/pat.5032
    [13] LI S T, YIN G L, BAI S N, et al. A new potential barrier model in epoxy resin nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(5):1535-1543. doi: 10.1109/TDEI.2011.6032822
    [14] YAO T, CHEN K, NIU T T, et al. Effects of frequency and thermal conductivity on dielectric breakdown characteristics of epoxy/cellulose/BN composites fabricated by ice-templated method[J]. Composites Science and Technology,2021,213:108945. doi: 10.1016/j.compscitech.2021.108945
    [15] WANG Z D, YANG M M, CHENG Y H, et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine[J]. Composites Part A: Applied Science and Manufacturing,2019,118:302-311. doi: 10.1016/j.compositesa.2018.12.022
    [16] HE L, CHEN T, WANG T, et al. Extra strong Cu2+-doped intumescent char to protect epoxy resin against fire[J]. Composites Part B: Engineering,2023,253:110539. doi: 10.1016/j.compositesb.2023.110539
    [17] SUN Z J, WONG R, YU M, et al. Nanocomposites for future electronics device packaging: A fundamental study of interfacial connecting mechanisms and optimal conditions of silane coupling agents for polydopamine-graphene fillers in epoxy polymers[J]. Chemical Engineering Journal,2022,439:135621. doi: 10.1016/j.cej.2022.135621
    [18] CHA J, JIN S, SHIM J H, et al. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites[J]. Materials & Design,2016,95:1-8.
    [19] WANG Z D, CHENG Y H, WANG H K, et al. Sandwiched epoxy-alumina composites with synergistically enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science,2017,52(8):4299-4308. doi: 10.1007/s10853-016-0511-6
    [20] WIE J, KIM M, KIM J. Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents[J]. Applied Surface Science,2020,529:147091. doi: 10.1016/j.apsusc.2020.147091
    [21] AGRAWAL A, CHANDRAKAR S. Influence of particulate surface treatment on physical, mechanical, thermal, and dielectric behavior of epoxy/hexagonal boron nitride composites[J]. Polymer Composites,2020,41(4):1574-1583. doi: 10.1002/pc.25479
    [22] YANG X T, ZHU J H, YANG D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B: Engineering,2020,185:107784. doi: 10.1016/j.compositesb.2020.107784
    [23] LU H W, LIN J Q, YANG W L, et al. Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nanocomposites[J]. Journal of Applied Polymer Science,2017,134(29):45101. doi: 10.1002/app.45101
    [24] YU J J, ZHAO W J, WU Y H, et al. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers[J]. Applied Surface Science,2018,434(15):1311-1320.
    [25] WANG Z B, IIZUKA T, KOZAKO M, et al. Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength Part II-breakdown strength[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(6):1973-1983. doi: 10.1109/TDEI.2011.6118635
    [26] 中国国家标准化管理委员会. 测定固体绝缘材料相对耐表面放电击穿能力的推荐试验方法: GB/T 22689—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Recommended test methods for determining the relative resistance of insulating materials to breakdown by surface discharges: GB/T 22689—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [27] 赵伟. 填料结构设计及杂化EP材料的制备与绝缘性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.

    ZHAO Wei. Filler structure design, preparation of hybrid EP material and research on insulation performance[D]. Harbin: Harbin University of Science and Technology, 2020(in Chinese).
    [28] YEHIA A. Characteristics of the dielectric barrier corona discharges[J]. AIP Advances,2019,9(4):045214. doi: 10.1063/1.5085675
    [29] 赵伟, 陈昊, 范勇. 疏水性气相SiO2改性环氧树脂的耐电晕性能[J]. 复合材料学报, 2019, 36(8):1822-1829.

    ZHAO Wei, CHEN Hao, FAN Yong. Corona resistance performance of epoxy resin modified by hydrophobic fumed SiO2[J]. Acta Materiae Compositae Sinica,2019,36(8):1822-1829(in Chinese).
    [30] STISHKOV Y K, SAMUSENKO A V, ASHIKHMIN I A. Corona discharge and electrogasdynamic flows in the air[J]. Physics-Uspekhi,2018,61(12):1213-1226. doi: 10.3367/UFNe.2018.06.038358
    [31] ZHAO L W, SHI X R, YIN Y, et al. A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities[J]. Composites Science and Technology,2020,186:107919. doi: 10.1016/j.compscitech.2019.107919
    [32] TANG Y Z, ZHANG P, ZHU M X, et al. Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites[J]. Materials,2019,12(24):4112-4124. doi: 10.3390/ma12244112
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  123
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-08-10
  • 录用日期:  2023-08-10
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回