留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

庚酰化乙二醇壳聚糖温敏性水凝胶的制备及其药物缓释

韩晓杰 李征征

韩晓杰, 李征征. 庚酰化乙二醇壳聚糖温敏性水凝胶的制备及其药物缓释[J]. 复合材料学报, 2024, 41(5): 2675-2683. doi: 10.13801/j.cnki.fhclxb.20230825.004
引用本文: 韩晓杰, 李征征. 庚酰化乙二醇壳聚糖温敏性水凝胶的制备及其药物缓释[J]. 复合材料学报, 2024, 41(5): 2675-2683. doi: 10.13801/j.cnki.fhclxb.20230825.004
HAN Xiaojie, LI Zhengzheng. Preparation of heptanoylated glycol chitosan thermo-sensitive hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2675-2683. doi: 10.13801/j.cnki.fhclxb.20230825.004
Citation: HAN Xiaojie, LI Zhengzheng. Preparation of heptanoylated glycol chitosan thermo-sensitive hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2675-2683. doi: 10.13801/j.cnki.fhclxb.20230825.004

庚酰化乙二醇壳聚糖温敏性水凝胶的制备及其药物缓释

doi: 10.13801/j.cnki.fhclxb.20230825.004
基金项目: 2018年度天津市教委科研计划项目(2018KJ110);2021年天津市研究生科研创新项目(2021YJSS048)
详细信息
    通讯作者:

    李征征,博士,副研究员,硕士生导师,研究方向为智能高分子水凝胶及其生物医用研究 E-mail: Li.z.z@tust.edu.cn

  • 中图分类号: O63;TB332

Preparation of heptanoylated glycol chitosan thermo-sensitive hydrogel for sustained drug release

Funds: Tianjin Education Commission Scientific Research Program Project (2018KJ110); 2021 Tianjin Graduate Research Innovation Project (2021YJSS048)
  • 摘要: 为了制备一种物理交联的温敏性水凝胶,本文选择水溶性乙二醇壳聚糖(GC)作为基体,通过庚酸酐与GC分子链上的氨基进行酰化反应实现改性,合成了具有不同庚酰度(DS)的庚酰化乙二醇壳聚糖(HAGC)。庚酸酐与GC分子链上氨基的进料摩尔比在0.2~0.25之间,DS介于26.4%~31.5%。通过在GC骨架上引入疏水性庚酰基团,提高GC在有机溶剂中的溶解度和体外生物降解性,而且还引入了温敏性溶胶-凝胶转变性质。HAGC通过分子间相互作用 (氢键和亲疏水相互作用) 发生物理交联,响应环境温度变化而发生溶胶-凝胶相变,通过改变HAGC的DS和溶液浓度,可有效调节HAGC水凝胶的溶胶-凝胶转变温度处于25~37℃之间。HAGC水凝胶具有三维多孔结构,随着DS增加,HAGC水凝胶的交联密度增大、溶胀比降低、药物释放速率减慢。HAGC水凝胶对吉西他滨具有缓释作用,药物释放时间可达5天,药物释放率达到70%~91%。HAGC水凝胶以其优良的温敏性能,在药物注射载体领域具有重要的应用价值。

     

  • 图  1  庚酰化乙二醇壳聚糖 (HAGC)温敏性水凝胶的合成路线示意图

    Figure  1.  Synthetic procedure of heptanoylated glycol chitosan (HAGC) thermo-sensitive hydrogel

    图  2  乙二醇壳聚糖(GC)、HAGC1、HAGC2和HAGC3的FTIR图谱

    Figure  2.  FTIR spectra of glycol chitosan (GC), HAGC1, HAGC2 and HAGC3

    图  3  GC、HAGC1、HAGC2和HAGC3的1H NMR图谱

    Figure  3.  1H NMR spectra of GC, HAGC1, HAGC2 and HAGC3

    图  4  HAGC水凝胶的SEM图像:((a1), (a2)) HAGC1 (3wt%);((b1), (b2)) HAGC2 (3wt%);((c1), (c2)) HAGC3 (3wt%)

    Figure  4.  SEM images of HAGC: ((a1), (a2)) HAGC1 (3wt%); ((b1), (b2)) HAGC2 (3wt%); ((c1), (c2)) HAGC3 (3wt%)

    图  5  试管反转法测定的HAGC的溶胶-凝胶转变相图

    Figure  5.  Sol-gel transition phase diagram of HAGC by the tube inverting method

    图  6  (a) HAGC的溶胶-凝胶转变示意图;(b) HAGC的可逆相变;(c) HAGC的可注射性示意图;(d) 3wt%HAGC3在37℃时呈凝胶状态

    RT—Room temperature

    Figure  6.  (a) Schematic diagram of sol-gel transition of HAGC; (b) Reversible phase transition of HAGC; (c) Injectability diagram of HAGC; (d) Gel form of 3wt%HAGC3 at 37℃

    图  7  HAGCs水凝胶的温度依赖性流变行为:(a) HAGC2 (3wt%); (b) HAGC3 (3wt%); (c) HAGC2 (4wt%);(d) HAGC3 (4wt%)

    T—Temperature; G'—Storage modulus; G"—Loss modulus

    Figure  7.  Temperature dependent rheological behavior of HAGC hydrogels: (a) HAGC2 (3wt%); (b) HAGC3 (3wt%); (c) HAGC2 (4wt%); (d) HAGC3 (4wt%)

    图  8  HAGC1、HAGC2和HAGC3水凝胶的溶胀速率

    Figure  8.  Swelling rate of HAGC1, HAGC2 and HAGC3 hydrogels

    图  9  HAGC水凝胶在溶菌酶溶液中的体外降解

    Figure  9.  Degradation of HAGC hydrogels in lysozyme solution

    图  10  载有吉西他滨的HAGC水凝胶的体外药物释放曲线

    Figure  10.  In vitro drug release profiles of gemcitabine loaded HAGC hydrogels

    表  1  HAGC的合成配比

    Table  1.   Synthetic ratio of HAGC

    SampleMolar ratioaDSb/%Yield/%
    HAGC10.20∶126.486.3
    HAGC20.22∶129.689.9
    HAGC30.24∶131.387.0
    Notes: a—Feed molar ratio of heptanoic anhydride to the amino group of glycol chitosan; b—Degree of heptanoylation determined by the peak integration of 1H NMR; DS—Degree of heptanoylation.
    下载: 导出CSV

    表  2  HAGC水凝胶对吉西他滨的释放机制

    Table  2.   Release characteristics of encapsulated gemcitabine from HAGC hydrogels

    SampleknRelease characteristics
    HAGC10.440.20pseudo-Fickian
    HAGC20.460.23pseudo-Fickian
    HAGC30.510.36pseudo-Fickian
    Notes: k—Rate constant; n—Release index.
    下载: 导出CSV
  • [1] KADRI R, BACHAROUCH J, ELKHOURY K, et al. Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels[J]. Materials Today Bio,2020,6:100046. doi: 10.1016/j.mtbio.2020.100046
    [2] WANG Y, WU Y, LONG L Y, et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment[J]. ACS Applied Materials & Interfaces,2021,13(28):33584-33599.
    [3] MISHRA B, UPADHYAY M, ADENA S K R, et al. Hydrogels: An introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering[J]. Biomicrofluidics,2017,4(1):1037-1049.
    [4] HUANG Q T, ZOU Y J, ARNO M C, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells[J]. Chemical Society Reviews,2017,46(20):6255-6275. doi: 10.1039/C6CS00052E
    [5] HSU S C, HSU S H, CHANG S W. Effect of pH on molecular structures and network of glycol chitosan[J]. ACS Biomaterials Science & Engineering,2020,6(1):298-307.
    [6] WU M Y, LONG Z, XIAO H N, et al. Recent research progress on preparation and application of N, N, N-trimethyl chitosan[J]. Carbohydrate Research,2016,434:27-32. doi: 10.1016/j.carres.2016.08.002
    [7] 楚立凯, 岳凌, 杨占山. 壳聚糖温敏性水凝胶蛋白载体的制备及其性能研究[J]. 复旦学报(自然科学版), 2015, 54(5):609-615.

    CHU Likai, YUE Ling, YANG Zhanshan. Preparation and properties of chitosan thermosensitive hydrogels for protein drug delivery[J]. Journal of Fudan University (Natural Science),2015,54(5):609-615(in Chinese).
    [8] HADDOW P, MCAULEY W J, KIRTON S, et al. Poly(N-isopropyl acrylamide)-poly(ethylene glycol)-poly (N-isopropyl acrylamide) as a thermoreversible gelator for topical administration[J]. Materials Advances,2020,1(3):371-386. doi: 10.1039/D0MA00080A
    [9] FREDRICK R, PODDER A, VISWANATHAN A, et al. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions[J]. Journal of Applied Polymer Science,2019,136(25):47665. doi: 10.1002/app.47665
    [10] WANG Q, HE Y, SHEN M, et al. Precision embolism: Biocompatible temperature-sensitive hydrogels as novel embolic materials for both mainstream and peripheral vessels[J]. Advanced Functional Materials, 2021, 31(20): 2011170.
    [11] FAN B E, CUI N F, XU Z W, et al. Thermoresponsive and self-healing hydrogel based on chitosan derivatives and polyoxometalate as an antibacterial coating[J]. Biomacromolecules,2022,23(3):972-982. doi: 10.1021/acs.biomac.1c01368
    [12] ZHOU L, DAI C, FAN L, et al. Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery[J]. Advanced Functional Materials,2021,31(14):2007457. doi: 10.1002/adfm.202007457
    [13] VASHAHI F, MARTINEZ M R, DASHTIMOGHADAM E, et al. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties[J]. Science Advances,2022,8(3):2469. doi: 10.1126/sciadv.abm2469
    [14] GONSALVES A, TAMBE P, LE D, et al. Synthesis and characterization of a novel pH-responsive drug-releasing nanocomposite hydrogel for skin cancer therapy and wound healing[J]. Journal of Materials Chemistry B,2021,9(46):9533-9546. doi: 10.1039/D1TB01934A
    [15] RUEL-GARIÉPY E, CHENITE A, CHAPUT C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs[J]. International Journal of Pharmaceutics,2000,203(1-2):89-98. doi: 10.1016/S0378-5173(00)00428-2
    [16] 李征征, 徐子扬, 高留意, 等. 温敏性乙二醇壳聚糖水凝胶的制备及药物缓释性能[J]. 高等学校化学学报, 2016, 37(12):2299-2305. doi: 10.7503/cjcu20160513

    LI Zhengzheng, XU Ziyang, GAO Liuyi, et al. Preparation and characterization of thermo-sensitive N-acetyl glycol chitosan hydrogel for sustained drug release[J]. Chemical Journal of Chinese Universities,2016,37(12):2299-2305(in Chinese). doi: 10.7503/cjcu20160513
    [17] BEHERA S, MAHANWAR P A. Superabsorbent polymers in agriculture and other applications: A review[J]. Polymer-Plastics Technology & Materials,2020,59(4):341-356.
    [18] WANG S, CHI J H, JIANG Z W, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J]. Carbohydrate Polymers,2021,256:117519. doi: 10.1016/j.carbpol.2020.117519
    [19] 石士慧, 潘卫东. 盐酸吉西他滨壳聚糖纳米粒的制备及其体外释药特性研究[J]. 中国新药杂志, 2011, 20(23):2372-2376.

    SHI Shihui, PAN Weidong. Preparation and in vitro release characteristics of gemcitabine hydrochloride chitosan nanoparticles[J]. Chinese Journal of New Drugs,2011,20(23):2372-2376(in Chinese).
    [20] 许超. 吉西他滨水凝胶的设计合成及其在胰腺癌的抗癌效果研究[D]. 天津: 天津医科大学, 2016.

    XU Chao. Design and synthesis of gemcitabine hydrogel and its anticancer effect in pancreatic cancer[D]. Tianjin: Tianjin: Tianjin Medical University, 2016 (in Chinese).
    [21] 支东彦. 高分子凝胶的制备、药物释放及其分子热力学研究[D]. 上海: 华东理工大学, 2013.

    ZHI Dongyan. Synthesis, drug release and molecular thermodynamic model of polymer hydrogels[D]. Shanghai: East China University of Science and Technology, 2013 (in Chinese).
    [22] FATHI M, ALAMI-MILANI M, GERANMAYEH M H, et al. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/poly(N-isopropylacrylamide-co-itaconic acid) for doxorubicin delivery in breast cancer[J]. International Journal of Biological Macromolecules,2019,128:957-964. doi: 10.1016/j.ijbiomac.2019.01.122
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  152
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回