留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2/聚丙烯复合材料的电老化寿命评估

高俊国 张广威 刘艳丽 鞠惠丞 刘力伟 刘雄军 韩啸

高俊国, 张广威, 刘艳丽, 等. 纳米SiO2/聚丙烯复合材料的电老化寿命评估[J]. 复合材料学报, 2024, 41(3): 1270-1280. doi: 10.13801/j.cnki.fhclxb.20230818.002
引用本文: 高俊国, 张广威, 刘艳丽, 等. 纳米SiO2/聚丙烯复合材料的电老化寿命评估[J]. 复合材料学报, 2024, 41(3): 1270-1280. doi: 10.13801/j.cnki.fhclxb.20230818.002
GAO Junguo, ZHANG Guangwei, LIU Yanli, et al. Evaluation of electrical aging life of nano SiO2/PP composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1270-1280. doi: 10.13801/j.cnki.fhclxb.20230818.002
Citation: GAO Junguo, ZHANG Guangwei, LIU Yanli, et al. Evaluation of electrical aging life of nano SiO2/PP composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1270-1280. doi: 10.13801/j.cnki.fhclxb.20230818.002

纳米SiO2/聚丙烯复合材料的电老化寿命评估

doi: 10.13801/j.cnki.fhclxb.20230818.002
基金项目: 国家自然科学基金(51577045);黑龙江省博士后科研启动基金(LBH-Q19106)
详细信息
    通讯作者:

    高俊国,博士,教授,博士生导师,研究方向为高压绝缘介电强度及影响机理、电力设备绝缘状态评估与检测 E-mail: gaojunguo@hrbust.edu.cn

  • 中图分类号: TM855;TB332

Evaluation of electrical aging life of nano SiO2/PP composites

Funds: National Natural Science Foundation of China (51577045); Heilongjiang Postdoctoral Grant (LBH-Q19106)
  • 摘要: 探究新型环保材料聚丙烯(PP)绝缘和其纳米SiO2复合材料的电老化寿命,为后期PP绝缘电缆应用可靠性提供理论支撑。基于电老化寿命公式−反幂定律,通过恒压加速老化试验估算了PP绝缘和SiO2/PP复合材料的寿命模型参数,再采用逐级升压加速老化试验对寿命指数n的可靠性进行评估。并对SiO2/PP复合材料进行结构表征和性能测试。结果表明,SiO2/PP6的寿命指数n为14.61,相较PP6的12.54提升了16.51%;试验阶段发现在较低老化场强下SiO2的掺杂对PP6的失效时间提升效果明显,预测SiO2/PP6在老化场强25 kV·mm−1以下的长期电老化寿命是PP6的5倍以上。同时,掺杂纳米SiO2使PP绝缘的工频介电损耗因数和损耗峰高度降低。基于电老化空腔理论,提出了SiO2通过消耗热电子能量限制链段断裂,从而提升PP绝缘电老化寿命的观点。

     

  • 图  1  加速电老化电极示意图

    Figure  1.  Schematic diagram of accelerated electrical aging electrode

    图  2  恒压加速老化试验(a)和逐级升压加速老化试验(b)的应力示意图

    Figure  2.  Stress diagram of constant pressure accelerated aging test (a) and step-up accelerated aging test (b)

    t—Time to failure in the test; S—Stress level for the aging test; k—A positive integer (1, 2, 3,···); ×—Failure of the sample

    图  3  纳米SiO2、聚丙烯6 (PP6)和SiO2/PP6的FTIR图谱

    Figure  3.  FTIR spectra of nano SiO2, polypropylene 6 (PP6), and SiO2/PP6

    图  4  SiO2颗粒、PP6和SiO2/PP6的脆断面的SEM图像

    Figure  4.  SEM images of SiO2 particles, PP6 and brittle sections of SiO2/PP6

    图  5  PP6和SiO2/PP6的介电频域图谱

    Figure  5.  Dielectric frequency domain spectra of PP6 and SiO2/PP6

    图  6  PP6和SiO2/PP6复合材料的应力-应变曲线

    Figure  6.  Stress-strain curves of PP6 and SiO2/PP6 composites

    图  7  PP6和SiO2/PP6的恒压加速老化试验失效时间Weibull分布

    Figure  7.  Weibull distribution of the constant pressure accelerated aging test for PP6 and SiO2/PP6

    图  8  PP6和SiO2/PP6的逐级升压加速老化试验失效时间Weibull分布

    Figure  8.  Weibull distribution of failure time for a stepwise accelerated aging test of PP6 and SiO2/PP6

    图  9  PP6和SiO2/PP6的双对数坐标下的电老化寿命曲线

    Figure  9.  Electric aging life curves of PP6 and SiO2/PP6 in double logarithmic coordinates

    图  10  SiO2消耗 PP 绝缘空腔中热电子能量的机制示意图

    Figure  10.  Schematic diagram of the mechanism of SiO2 depleting the energy of hot electrons in PP insulating cavities

    表  1  PP6和SiO2/PP6复合材料应力-应变实验参数

    Table  1.   Stress-strain experimental parameters of PP6 and SiO2/PP6 composites

    SpecimenTensile yield stress/MPaTensile strain at fracture/%Tensile strength/MPa
    PP62967233
    SiO2/PP62977037
    下载: 导出CSV

    表  2  PP6和SiO2/PP6寿命模型参数最小二乘拟合估计值

    Table  2.   Least squares fitting estimates of the lifetime model parameters for PP6 and SiO2/PP6

    Estimates of model
    parameters
    PP6SiO2/PP6
    lnC54.86±4.8163.83±4.73
    n12.54±1.1914.61±1.17
    Goodness of fit0.970.98
    Fitted formulat=6.69×1023 E−12.54t=5.26×1027 E−14.61
    Notes: lnC—Constant related to the material itself; n—Voltage endurance coefficient; t—Electrical aging lifetime; E—Aging electric field strength.
    下载: 导出CSV

    表  3  PP6和SiO2/PP6的逐级升压加速老化试验数据参数

    Table  3.   Stepwise accelerated aging test data parameters of PP6 and SiO2/PP6

    MaterialparametersVoltage duration per level T/min
    1 min10 min30 min
    PP6 tstep 7.70 38.07 62.75
    p 7.70 3.81 2.09
    SiO2/PP6 tstep 7.82 43.28 91.92
    p 7.82 4.33 3.06
    Notes:tstep—Failure time of the Weibull distribution for the step-up test; p—Number of stages corresponding to the breakdown time: p= tstep/T.
    下载: 导出CSV

    表  4  PP6和SiO2/PP6寿命指数n值计算

    Table  4.   PP6 and SiO2/PP6 life index n value calculation

    MaterialCalculation of the value of the life index n
    n1/10 minn10/30 minn30/1 min
    PP612.1313.0912.43
    SiO2/PP613.5217.7314.65
    下载: 导出CSV

    表  5  PP6和SiO2/PP6的电老化寿命预测情况

    Table  5.   Electrical aging life prediction of PP6 and SiO2/PP6

    Electric field strength E/(kV·mm−1)Estimated life/year
    PP6SiO2/PP6
    25 6.25 44.65
    2410.65 81.73
    2318.60153.51
    下载: 导出CSV
  • [1] 牟明明, 袁光明, 陈世尧. 纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响[J]. 复合材料学报, 2020, 5(6):1268-1277.

    MOU Mingming, YUAN Guangming, CHEN Shiyao. Effect of nano-TiO2 on anti-aging properties of wood fiber/polypropylene composites[J]. Acta Materiae Compositae Sinica,2020,5(6):1268-1277(in Chinese).
    [2] 胡世勋, 张雅茹, 邵清, 等. 不同改性技术路线的聚丙烯基高压直流电缆绝缘材料综合性能比较[J]. 中国电机工程学报, 2022, 42(4):1243-1252. doi: 10.13334/j.0258-8013.pcsee.212446

    HU Shixun, ZHANG Yaru, SHAO Qing, et al. Comprehen-sive performance comparison of polypropylene based HVDC cable insulation materials with different modification techniques[J]. Proceedings of the CSEE,2022,42(4):1243-1252(in Chinese). doi: 10.13334/j.0258-8013.pcsee.212446
    [3] 黄兴溢, 张军, 江平开. 热塑性电力电缆绝缘材料: 历史与发展[J]. 高电压技术, 2018, 44(5):1377-1398.

    HUANG Xingyi, ZHANG Jun, JIANG Pingkai. Thermoplastic power cable insulation materials: History and development[J]. High Voltage Technology,2018,44(5):1377-1398(in Chinese).
    [4] YOSHINO K, DEMURA T, KAWAHIGASHI M, et al. Application of a novel polypropylene to the insulation of an electric power cable[J]. Electrical Engineering in Japan,2004,146(1):18-26. doi: 10.1002/eej.10210
    [5] MIYASHITA Y, DEMURA T, UEDA A, et al. The application of novel polypropylene to the insulation of electric power cable (2)[J]. IEEJ Transactions on Fundamentals and Materials,2003,123(8):797-803. doi: 10.1541/ieejfms.123.797
    [6] KURAHASHI K, MATSUDA Y, MIYASHITA Y, et al. The application of novel polypropylene to the insulation of electric power cable (3)[J]. IEEJ Transactions on Fundamentals and Materials,2004,124(4):331-336. doi: 10.1541/ieejfms.124.331
    [7] BIAN H, YANG L, YAO R, et al. Method of selecting step stress test parameters for XLPE insulation DC voltage endurance coefficient[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):746-753. doi: 10.1109/TDEI.2019.007649
    [8] 乔海霞, 顾东雅, 曾竟成. 聚合物基复合材料加速老化方法研究进展[J]. 材料导报, 2007(4):48-51. doi: 10.3321/j.issn:1005-023X.2007.04.012

    QIAO Haixia, GU Dongya, ZENG Jingcheng. Research progress of accelerated aging methods for polymer matrix composites[J]. Materials Review,2007(4):48-51(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.04.012
    [9] PREETHA P, THOMAS M J. Life estimation of electrother-mally stressed epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(3):1154-1160. doi: 10.1109/TDEI.2014.6832260
    [10] 廖雁群, 冯冰, 罗潘, 等. 反幂定律应用于高压电缆寿命设计的研究进展[J]. 绝缘材料, 2016, 49(3):1-6. doi: 10.16790/j.cnki.1009-9239.im.2016.03.001

    LIAO Yanqun, FENG Bing, LUO Pan, et al. Research progress of inverse power law applied to life design of high voltage cable[J]. Insulation Materials,2016,49(3):1-6(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2016.03.001
    [11] 刘霞, 于钦学, 钟力生, 等. 高压XLPE电缆绝缘V-t特性研究综述[J]. 南方电网技术, 2015, 9(10):57-63. doi: 10.13648/j.cnki.issn1674-0629.2015.10.010

    LIU Xia, YU Qinxue, ZHONG Lisheng, et al. Review on V-t characteristics of high voltage XLPE cable insulation[J]. China Southern Power Grid Technology,2015,9(10):57-63(in Chinese). doi: 10.13648/j.cnki.issn1674-0629.2015.10.010
    [12] 林春耀, 欧小波, 魏新劳, 等. 温度对步进电压下油纸绝缘电老化的影响[J]. 高压电器, 2016, 52(10):194-200. doi: 10.13296/j.1001-1609.hva.2016.10.033

    LIN Chunyao, OU Xiaobo, WEI Xinlao, et al. Effect of temperature on electrical aging of oil paper insulation under stepping voltage[J]. High Voltage Electrical Apparatus,2016,52(10):194-200(in Chinese). doi: 10.13296/j.1001-1609.hva.2016.10.033
    [13] 刘智谦, 高震, 郝建, 等. 交流500 kV交联聚乙烯海缆绝缘材料的步进工频击穿特性及寿命模型[J]. 绝缘材料, 2020, 53(2):29-35.

    LIU Zhiqian, GAO Zhen, HAO Jian, et al. Stepping power frequency breakdown characteristics and life model of 500 kV XLPE marine cable insulation[J]. Insulation Mate-rials,2020,53(2):29-35(in Chinese).
    [14] 袁端磊, 王海燕, 杨芳, 等. 固体绝缘件长时间正常工作条件下电老化寿命评估方法研究[J]. 高压电器, 2017, 53(4):31-35, 40. doi: 10.13296/j.1001-1609.hva.2017.04.006

    YUAN Duanlei, WANG Haiyan, YANG Fang, et al. Study on evaluation method of electric aging life of solid insulating parts under normal working conditions for long time[J]. High Voltage Electrical Equipment,2017,53(4):31-35, 40(in Chinese). doi: 10.13296/j.1001-1609.hva.2017.04.006
    [15] 李艳文, 李媛媛, 田慕琴, 等. 矿用典型绝缘材料击穿特性及寿命模型的研究[J]. 高压电器, 2019, 55(2):104-109. doi: 10.13296/j.1001-1609.hva.2019.02.015

    LI Yanwen, LI Yuanyuan, TIAN Muqin, et al. Study on breakdown characteristics and life model of typical insula-ting materials used in mines[J]. High Voltage Electrical Equipment,2019,55(2):104-109(in Chinese). doi: 10.13296/j.1001-1609.hva.2019.02.015
    [16] HUANG Y, ZHAO H, WANG Y, et al. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach[J]. Journal of Applied Physics,2017,122(6):065101. doi: 10.1063/1.4997720
    [17] TAKALA M, RANTA H, NEVALAINEN P, et al. Dielectric properties and partial discharge endurance of polypropy-lene-silica nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4):1259-1267. doi: 10.1109/TDEI.2010.5539698
    [18] LI W, ZHANG L, ZHANG M, et al. The effects of interfacial water and SiO2 surface wettability on the adhesion properties of SiO2 in epoxy nanocomposites[J]. Applied Surface Science,2020,502:144151. doi: 10.1016/j.apsusc.2019.144151
    [19] RONG Z, ZHAO M, WANG Y. Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites[J]. Materials,2020,13(3):646. doi: 10.3390/ma13030646
    [20] WANG Y, XIAO K, WANG C, et al. Effect of nanoparticle surface modification and filling concentration on space charge characteristics in TiO2/XLPE nanocomposites[J]. Journal of Nanomaterials, 2016: 2840410.
    [21] ASHISH SHARAD P, KUMAR K S. Application of surface-modified XLPE nanocomposites for electrical insulation-partial discharge and morphological study[J]. Nanocomposites,2017,3(1):30-41. doi: 10.1080/20550324.2017.1325987
    [22] ZHANG L, ZHOU Y, HUANG M, et al. Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(2):424-433. doi: 10.1109/TDEI.2013.004145
    [23] ZHANG G W, GAO J G, WANG R, et al. Space charge characteristics and breakdown properties of nanostructured SiO2/PP composites[J]. Polymers,2023,15(13):2826. doi: 10.3390/polym15132826
    [24] GAO J G, LIU H S, LEE T T, et al. Effect of hydrophilic/hydrophobic nanostructured TiO2 on space charge and breakdown properties of polypropylene[J]. Polymers,2022,14(14):2762. doi: 10.3390/polym14142762
    [25] ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):629-643. doi: 10.1109/TDEI.2005.1511089
    [26] WANG Y, LYU Z, WANG X, et al. Estimating the inverse power law aging exponent for the DC aging of XLPE and its nanocomposites at different temperatures[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(6):3504-3513. doi: 10.1109/TDEI.2016.005889
    [27] 黄烜城, 王政钧, 吕泽鹏, 等. 基于Crine模型和逐步升压法的交联聚乙烯及其纳米复合材料老化寿命研究[J]. 绝缘材料, 2021, 54(12):73-79. doi: 10.16790/j.cnki.1009-9239.im.2021.12.012

    HUANG Xuan Cheng, WANG Zhengjun, LYU Zepeng, et al. Study on aging life of crosslinked polyethylene and its nano composites based on crine model and step-up method[J]. Insulating Materials,2021,54(12):73-79(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2021.12.012
    [28] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第3部分: 薄膜和薄片的试验条件: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 3: Test conditions for films and sheets: GB/T 1040.3—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [29] LIU T, LYU Z, WANG Y, et al. A new method of estimating the inverse power law ageing parameter of XLPE based on step-stress tests[C]//2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Shenzhen: IEEE, 2013: 69-72.
    [30] 敖玉辉, 周梦思, 冯芳. 不同弹性体增韧聚丙烯的研究[J]. 化工新型材料, 2014, 42(3):189-190, 193.

    AO Yuhui, ZHOU Mengsi, FENG Fang. Research on toughening polypropylene with different elastomers[J]. Chemical New Materials,2014,42(3):189-190, 193(in Chinese).
    [31] 郗晓光, 宋鹏先, 王浩鸣, 等. 无机纳米掺杂XLPE电缆绝缘的力学性能与电气强度研究[J]. 绝缘材料, 2018, 51(8):21-25, 36.

    XI Xiaoguang, SONG Pengxian, WANG Haoming, et al. Mechanical properties and electrical strength of inorganic nano-doped XLPE cable insulation[J]. Insulation Mate-rials,2018,51(8):21-25, 36(in Chinese).
    [32] 宋红艳, 黄兴溢, 张军, 等. XLPE及XLPE/MgO纳米复合材料的击穿强度与力学性能的比较研究[J]. 绝缘材料, 2014, 47(3):17-21. doi: 10.16790/j.cnki.1009-9239.im.2014.03.006

    SONG Hongyan, HUANG Xingyi, ZHANG Jun, et al. Comparative study of breakdown strength and mechanical properties of XLPE and XLPE/MgO nanocomposites[J]. Insulation Materials,2014,47(3):17-21(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2014.03.006
    [33] 蒋佩南, 钱跃新, 王佳坤, 等. 评定挤塑电缆n值的新方法及其验证试验[J]. 电线电缆, 1983(4):26-33. doi: 10.16105/j.cnki.dxdl.1983.04.007

    JIANG Peinan, QIAN Yuexin, WANG Jiakun, et al. A new method for evaluating the n value of extruded cable and its verification test[J]. Wire and Cable,1983(4):26-33(in Chinese). doi: 10.16105/j.cnki.dxdl.1983.04.007
    [34] MAZZANTI G, MONTANARI G C, CIVENNI F. Model of inception and growth of damage from microvoids in polyethylene-based materials for HVDC cables. 1. Theoretical approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(5):1242-1254. doi: 10.1109/TDEI.2007.4339485
    [35] DISSADO L A, MAZZANTI G, MONTANARI G C. The role of trapped space charges in the electrical aging of insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(5):496-506. doi: 10.1109/94.625642
    [36] 张杰, 赵学童, 边浩然, 等. 电荷陷阱对XLPE绝缘电老化特性的影响[J]. 高电压技术, 2021, 47(8):2991-3000. doi: 10.13336/j.1003-6520.hve.20200809

    ZHANG Jie, ZHAO Xuedong, BIAN Haoran, et al. Effect of charge traps on the electrical aging characteristics of XLPE insulation[J]. High Voltage Technology,2021,47(8):2991-3000(in Chinese). doi: 10.13336/j.1003-6520.hve.20200809
    [37] 李晓虎, 李剑, 孙才新, 等. 植物油-纸绝缘的电老化寿命试验研究[J]. 中国电机工程学报, 2007(9):18-22. doi: 10.3321/j.issn:0258-8013.2007.09.004

    LI Xiaohu, LI Jian, SUN Caixin, et al. Experimental study on electric aging life of vegetable oil paper insulation[J]. Proceedings of the CSEE,2007(9):18-22(in Chinese). doi: 10.3321/j.issn:0258-8013.2007.09.004
    [38] 王新生, 屠德民, 杨会中. 聚合物电老化击穿临界状态的实验验证[J]. 中国电机工程学报, 1993(S1):3-8. doi: 10.13334/j.0258-8013.pcsee.1993.s1.001

    WANG Xinsheng, TU Demin, YANG Huizhong. Experimental verification of critical state of breakdown in polymer electroaging[J]. Proceedings of the CSEE,1993(S1):3-8(in Chinese). doi: 10.13334/j.0258-8013.pcsee.1993.s1.001
    [39] 高俊国, 赵贺, 李霞, 等. 纳米SiO2/低密度聚乙烯复合材料的陷阱特性与电击穿机制[J]. 复合材料学报, 2019, 36(4):801-810.

    GAO Junguo, ZHAO He, LI Xia, et al. Trap properties and electrical breakdown mechanism of nano-SiO2/low-density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(4):801-810(in Chinese).
    [40] 王猛, 成如如, 高俊国, 等. 微纳米SiO2/低密度聚乙烯复合材料的空间电荷性能[J]. 复合材料学报, 2019, 36(11):2541-2551.

    WANG Meng, CHENG Ruru, GAO Junguo, et al. Space charge properties of micro- and nano-SiO2/low-density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2541-2551(in Chinese).
    [41] 姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2):645-655.

    JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of the scale factor of SiO2 particles on the crystalli-zation behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica,2022,39(2):645-655(in Chinese).
    [42] 高俊国. 聚乙烯/纳米蒙脱土复合物的空间电荷特性与介电性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2013.

    GAO Junguo. Study on space charge and dielectric properties of polyethylene/nano-montmorillonite composites[D]. Harbin: Harbin University of Science and Technology, 2013(in Chinese).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  150
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-08-14
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回