留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝夹层声衬材料宽频吸声性能优化

罗靓 白鹤宇 叶卓然 顾轶卓

罗靓, 白鹤宇, 叶卓然, 等. 蜂窝夹层声衬材料宽频吸声性能优化[J]. 复合材料学报, 2024, 41(3): 1290-1299. doi: 10.13801/j.cnki.fhclxb.20230817.005
引用本文: 罗靓, 白鹤宇, 叶卓然, 等. 蜂窝夹层声衬材料宽频吸声性能优化[J]. 复合材料学报, 2024, 41(3): 1290-1299. doi: 10.13801/j.cnki.fhclxb.20230817.005
LUO Liang, BAI Heyu, YE Zhuoran, et al. Optimization of broadband sound absorption performance of honeycomb sandwich sound liner[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1290-1299. doi: 10.13801/j.cnki.fhclxb.20230817.005
Citation: LUO Liang, BAI Heyu, YE Zhuoran, et al. Optimization of broadband sound absorption performance of honeycomb sandwich sound liner[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1290-1299. doi: 10.13801/j.cnki.fhclxb.20230817.005

蜂窝夹层声衬材料宽频吸声性能优化

doi: 10.13801/j.cnki.fhclxb.20230817.005
基金项目: 基础加强计划技术领域基金项目(2019-JCJQ-JJ-255)
详细信息
    通讯作者:

    罗靓,博士,研究员,硕士生导师,研究方向为航空航天领域材料 E-mail: luoliang@buaa.edu.cn

  • 中图分类号: TB34;TB333;V231.9

Optimization of broadband sound absorption performance of honeycomb sandwich sound liner

Funds: Foundation Strengthening Plan Technology Field Fund Project (2019-JCJQ-JJ-255)
  • 摘要: 针对目前大涵道比涡扇发动机宽频随机的噪声特点,对传统单自由度蜂窝夹层声衬材料进行了结构优化,提升其吸声性能。在保持声衬单自由度蜂窝夹层结构基本形式不变的前提下,为拓宽吸声频谱、达到两个甚至两个以上的特征频率,在单层蜂窝芯内部特定位置复合碳纳米管薄膜,同时为了提高吸声效果,通过快捷的工艺组装,在多孔板和蜂窝芯之间引入金属丝网和柔性多孔材料,并探究了引入材料的放置位置和参数对于声衬材料吸声性能的影响。实验结果显示,孔径37 μm的金属丝网置于多孔面板后、15 mm厚的三聚氰胺海绵放置在多孔面板和蜂窝之间、开孔率为2%和4%的碳纳米管薄膜放置在蜂窝夹层结构内近中间位置的吸声性能最好。基于该结果制备的声衬吸声性能优异,在800 Hz到4500 Hz范围内表现出良好的吸声性能,两个特征频率的峰值吸声系数分别达到0.98和0.99,平均吸声系数达到0.89,相比优化前提升61.8%,同时半峰宽度能够完全覆盖测试的800 Hz到4500 Hz频率范围,具有良好的宽频降噪特性。

     

  • 图  1  使用带孔模具和真空袋工艺直接成型的蜂窝夹层声衬

    Figure  1.  Honeycomb sandwich structure composites directly formed by using a mold with holes and a vacuum bag process

    图  2  阻抗管结构示意图(a)和测试系统设备连接图(b)

    Figure  2.  Structure diagram (a) and connection diagram (b) of test system equipment of impedance tube

    图  3  装配测试样品及夹具的阻抗管实物图

    Figure  3.  Physical drawing of impedance tube for assembling test sample and fixture

    图  4  引入不同孔径(a)和放置位置(b)金属丝网的蜂窝夹层声衬材料的频率-吸声系数曲线

    Figure  4.  Frequency-absorption coefficient curves of honeycomb sandwich sound-absorbing materials with different bore diameters (a) and placement positions (b)

    图  5  引入不同放置深度(a)和开孔率(b)碳纳米管薄膜的蜂窝夹层声衬材料的频率-吸声系数曲线

    Figure  5.  Frequency-absorption coefficient curves of honeycomb sandwich sound-absorbing materials with carbon nanotube films of different placement depths (a) and porosities (b)

    图  6  引入不同放置位置(a)、厚度(b)和材料(c)的柔性多孔材料的蜂窝夹层声衬材料的频率-吸声系数曲线

    Figure  6.  Frequency-absorption coefficient curves of honeycomb sandwich sound-absorbing materials with flexible porous materials with different placement positions (a), thicknesses (b) and materials (c)

    图  7  优化的蜂窝夹层声衬复合材料

    Figure  7.  Optimized honeycomb sandwich structure sound absorbing composites

    图  8  优化前后的蜂窝夹层声衬材料的频率-吸声系数曲线对比

    Figure  8.  Comparison of frequency-absorbing coefficient curves of honeycomb sandwich sound liner materials before and after optimization

    表  1  蜂窝夹层声衬材料(对照组)参数

    Table  1.   Parameters of honeycomb sandwich structure sound absorbing material (Control)

    Thickness of
    perforated plate/mm
    Hole diameter of
    perforated plate/mm
    Porosity of
    perforated plate/%
    Thickness of
    honeycomb core/mm
    Side length of
    honeycomb
    core cell/mm
    0.502.009.3330.005.50
    下载: 导出CSV

    表  2  不同优化材料的参数

    Table  2.   Parameters for different optimized materials

    Wire meshCarbon nanotube filmFlexible porous material
    PositionHole dia-meter/μmDepthPorosity/%PositionThickness/
    mm
    Material
    In front of perforated plate
    Behind perforated plate
    74
    37
    20
    10
    14
    20
    2
    3
    4
    In front of honeycomb core
    In honeycomb core
    Behind honeycomb core
    5
    10
    15
    #25 polyurethane sponge
    #55 polyurethane sponge
    Melamine sponge
    Polyester cotton
    Carbon nanotube sponge
    Polymethacrylimide (PMI) foam
    下载: 导出CSV

    表  3  金属丝网孔径对蜂窝夹层声衬材料吸声性能的影响

    Table  3.   Effect of hole diameter of wire mesh on sound absorption properties of honeycomb sandwich structure

    SubjectCharacteristic frequency/HzHalf peak width/HzPeak absorption coefficientAverage absorption coefficient
    Control150022000.840.55
    74 μm150027000.910.66
    37 μm150030000.970.73
    20 μm150028000.960.69
    下载: 导出CSV

    表  4  金属丝网放置位置对蜂窝夹层声衬材料吸声性能的影响

    Table  4.   Effect of position of wire mesh on sound absorption performance of honeycomb sandwich structure

    SubjectCharacteristic
    frequency/Hz
    Half peak
    width/Hz
    Peak absorption
    coefficient
    Average absorption
    coefficient
    Control150022000.840.55
    In front of perforated plate150030000.970.73
    Behind perforated plate150032000.990.78
    下载: 导出CSV

    表  5  碳纳米管薄膜放置深度对蜂窝夹层声衬材料吸声性能的影响

    Table  5.   Effect of placement depth of carbon nanotube films on sound absorption properties of honeycomb sandwich structure sound absorbing materials

    SubjectCharacteristic frequency/HzHalf peak width/HzPeak absorption coefficientAverage absorption coefficient
    Control150022000.840.55
    10 mm0.940.74
    14 mm1500>37000.930.79
    20 mm1500>37000.860.71
    下载: 导出CSV

    表  6  碳纳米管薄膜开孔率对蜂窝夹层声衬材料吸声性能的影响

    Table  6.   Effect of porosity of carbon nanotube films on sound absorption properties of honeycomb sandwich sound absorbing materials

    SubjectCharacteristic frequency/HzHalf peak width/HzPeak absorption coefficientAverage absorption coefficient
    Control150022000.840.55
    2%1500>37000.930.79
    3%0.900.76
    4%0.910.67
    下载: 导出CSV

    表  7  #25聚氨酯海绵放置位置对蜂窝夹层声衬材料吸声性能的影响

    Table  7.   Influence of #25 polyurethane sponge placement on sound absorption performance of honeycombsandwich structuree

    SubjectCharacteristic
    frequency/Hz
    Half peak
    width/Hz
    Peak absorption
    coefficient
    Average absorption
    coefficient
    Control150022000.840.55
    In front of honeycomb core150030000.930.65
    In honeycomb core150028000.810.55
    Behind honeycomb core150025000.820.53
    下载: 导出CSV

    表  8  #25聚氨酯海绵厚度对蜂窝夹层声衬材料吸声性能的影响

    Table  8.   Influence of thickness of #25 polyurethane sponge on sound absorption properties of honeycomb sandwich structure

    SubjectCharacteristic
    frequency/Hz
    Half peak
    width/Hz
    Peak absorption
    coefficient
    Average absorption
    coefficient
    Control150022000.840.55
    5 mm150026000.910.60
    10 mm150030000.930.65
    15 mm150029000.950.69
    下载: 导出CSV

    表  9  柔性多孔材料类型对蜂窝夹层声衬材料吸声性能的影响

    Table  9.   Effect of type of flexible porous materials on sound absorption properties of honeycomb sandwich structure sound absorption material

    SubjectCharacteristic frequency/HzHalf peak width/HzPeak absorption coefficientAverage absorption coefficient
    Control150022000.840.55
    #25 polyurethane sponge150030000.930.65
    #55 polyurethane sponge150032000.980.75
    Melamine foam1500>37001.000.81
    Polyester cotton150027000.910.62
    Carbon nanotube sponge0.570.45
    PMI foam0.980.50
    下载: 导出CSV

    表  10  优化的蜂窝夹层声衬复合材料结构参数

    Table  10.   Structural parameters of optimized honeycomb sandwich structure sound absorbing composites

    MaterialStructural parametersSpecifications
    Perforated plateThickness0.5 mm
    Porosity9.33%
    Wire meshHole diameter37 μm
    Melamine foamThickness15 mm
    Honeycomb coreThickness30 mm
    Carbon nanotube filmThickness0.01 mm
    Porosity2%/4%
    Depth14 mm
    BackplaneThickness1 mm
    下载: 导出CSV
  • [1] 宋笔锋, 张彬乾, 韩忠华. 大型客机总体设计准则与概念创新[J]. 航空学报, 2008(3):583-595. doi: 10.3321/j.issn:1000-6893.2008.03.009

    SONG Bifeng, ZHANG Binqian, HAN Zhonghua. The study of concept design criteria for large-scale passenger aircraft with new technologies[J]. Acta Aeronautica et Astronautica Sinica,2008(3):583-595(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.009
    [2] 赵鲲, 梁俊彪, BELYAEV Ivan, 等. 民用飞机起落架噪声及其控制技术研究进展综述[J]. 航空学报, 2022(8):137-173. doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208012

    ZHAO Kun, LIANG Junbiao, BELYAEV Ivan, et al. Review of civil airplane landing gear noise study and its control approaches[J]. Acta Aeronautica et Astronautica Sinica,2022(8):137-173(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208012
    [3] 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010, 10-20.

    QIAO Weiyang. Aeroengine aeroacoustics[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010, 10-20(in Chinese).
    [4] 乔渭阳, 王良锋, 段文华, 等. 航空发动机气动声学设计的理论、模型和方法[J]. 推进技术, 2021, 42(1):10-38.

    QIAO Weiyang, WANG Liangfeng, DUAN Wenhua, et al. Theory, model and method of aeroacoustic design for aero-engines[J]. Journal of Propulsion Technology,2021,42(1):10-38(in Chinese).
    [5] 伍赛特. 航空发动机环境污染现象及解决措施研究[J]. 能源与节能, 2021(1):80-82.

    WU Saite. Study on phenomenon of aero engine environmental pollution and its solutions[J]. Energy and Energy Conservation,2021(1):80-82(in Chinese).
    [6] 伍赛特. 航空发动机燃烧室设计研发过程研究综述[J]. 上海节能, 2019(7):584-588.

    WU Saite. Summary of research on aero engine combustion chamber design and development process[J]. Shanghai Energy Conservation,2019(7):584-588(in Chinese).
    [7] 张晨东, 唐庆如, 赵军, 等. GE90大涵道比涡扇发动机动态性能研究[J]. 西安航空学院学报, 2021, 41(1):28-33.

    ZHANG Chendong, TANG Qingru, ZHAO Jun, et al. Research of dynamic performance of GE90 high bypass ratio turbofan engine[J]. Journal of Xi'an Aeronautical University,2021,41(1):28-33(in Chinese).
    [8] 蔡常鹏, 郑前钢, 颜秋英, 等. 军用小涵道比涡扇发动机最大状态控制计划鲁棒性分析[J]. 推进技术, 2022, 43(5):315-322.

    CAI Changpeng, ZHENG Qiangang, YAN Qiuying, et al. Robustness analysis of maximum state control plan for mili-tary small bypass ratio turbofan engine[J]. Journal of Propulsion Technology,2022,43(5):315-322(in Chinese).
    [9] 赖安卿, 付尧明, 闫锋. 民航涡扇发动机高高原起动失效机制试验研究[J]. 机械设计与制造, 2020(1):101-104.

    LAI Anqing, FU Yaoming, YAN Feng. Experimental research on starting failure of civil aviation turbofan engine at high plateau[J]. Machinery Design & Manufacture,2020(1):101-104(in Chinese).
    [10] 张丹玲, 郝勇, 王德友, 等. 中国大涵道比涡扇发动机适航技术初步研究[J]. 航空发动机, 2011, 37(4):58-62.

    ZHANG Danling, HAO Yong, WANG Deyou, et al. Prelimi-nary investigation of airworthiness technologies for high bypass ratio turbofan engine in China[J]. Aeroengine,2011,37(4):58-62(in Chinese).
    [11] 陈光. 用于波音787客机的GEnx发动机设计特点[J]. 航空发动机, 2010, 36(1):1-6.

    CHEN Guang. Design characteristics of GEnx engine for B787[J]. Aeroengine,2010,36(1):1-6(in Chinese).
    [12] 陈光. 大涵道比涡扇发动机的发展[J]. 航空动力, 2019(3):56-61.

    CHEN Guang. The development of civil high-bypass turbofans[J]. Aerospace Power,2019(3):56-61(in Chinese).
    [13] 陈光. 大涵道比涡扇发动机风扇叶片的变迁[J]. 航空动力, 2018(5):26-30.

    CHEN Guang. Changes of fan blades of high-bypass-ratio turbofans[J]. Aerospace Power,2018(5):26-30(in Chinese).
    [14] 陈玲, 夏语, 纪良. 民用飞机发动机噪声辐射特性研究[J]. 噪声与振动控制, 2012, 32(4):78-82. doi: 10.3969/j.issn.1006-1355.2012.04.018

    CHEN Ling, XIA Yu, JI Liang. Study on characteristics noise radiation of civil aircraft engine[J]. Noise and Vibration Control,2012,32(4):78-82(in Chinese). doi: 10.3969/j.issn.1006-1355.2012.04.018
    [15] 李旦望, 夏烨. 大涵道比涡扇发动机风扇转静干涉降噪研究[J]. 中国设备工程, 2019(13):61-63.

    LI Danwang, XIA Ye. Research on noise reduction of turbofan fan with large bypass ratio by rotor stator interfe-rence[J]. China Plant Engineering,2019(13):61-63(in Chinese).
    [16] 聂平. 涡扇发动机核心机静态噪声数据预测方法研究[D]. 天津: 中国民航大学, 2017.

    NIE Ping. Research on prediction method of static noise data of turbofan engine core engine[D]. Tianjin: Civil Aviation University of China, 2017(in Chinese).
    [17] AZIMI M, OMMI F, ALSSHTI N J. Using acoustic liner for fan noise reduction in modern turbofan engines[J]. International Journal of Aeronautical and Space Sciences,2014,15(1):97-101. doi: 10.5139/IJASS.2014.15.1.97
    [18] 段翠云, 崔光, 刘培生. 多孔吸声材料的研究现状与展望[J]. 金属功能材料, 2011, 18(1):60-65.

    DUAN Cuiyun, CUI Guang, LIU Peisheng. Present research and prospect of porous absorption materials[J]. Metallic Functional Materials,2011,18(1):60-65(in Chinese).
    [19] BECK B S, SCHILLER N H, JONES M G. Impedance assessment of a dual-resonance acoustic liner[J]. Applied Acoustics,2015,93:15-22. doi: 10.1016/j.apacoust.2015.01.011
    [20] 龚情, 何志平, 黄建萍, 等. 吸声蜂窝结构材料及其在直升机上的应用展望[J]. 高科技纤维与应用, 2020, 45(5):1-7.

    GONG Qing, HE Zhiping, HUANG Jianping, et al. Review of sound-absorbing honeycomb material and the application on helicopter[J]. Hi-Tech Fiber and Application,2020,45(5):1-7(in Chinese).
    [21] 李文智, 陈忱, 黄建萍, 等. 内嵌式多自由度吸声蜂窝结构降噪性能影响因素研究[J]. 高科技纤维与应用, 2022, 47(3):24-29. doi: 10.3969/j.issn.1007-9815.2022.03.003

    LI Wenzhi, CHEN Chen, HUANG Jianping, et al. Study on the influence factors of noise reduction performance of embedded multi degree of freedom acoustic honeycomb structure[J]. Hi-Tech Fiber and Application,2022,47(3):24-29(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.03.003
    [22] 纪双英, 郝巍, 史湘宁, 等. 内嵌式多自由度共振吸声结构研究[J]. 纤维复合材料, 2018, 35(3):38-41. doi: 10.3969/j.issn.1003-6423.2018.03.008

    JI Shuangying, HAO Wei, SHI Xiangning, et al. Study on sound absorptionstructure of embedded multi degree of freedom resonance[J]. Fiber Composites,2018,35(3):38-41(in Chinese). doi: 10.3969/j.issn.1003-6423.2018.03.008
    [23] MA X Q, SU Z T. Development of acoustic liner in aero engine: A review[J]. Science China Technological Sciences,2020,63(12):2491-2504. doi: 10.1007/s11431-019-1501-3
    [24] 杨嘉丰, 薛东文, 李卓瀚, 等. 切向流条件下短舱单/双自由度声衬实验[J]. 航空学报, 2020, 41(11):337-347.

    YANG Jiafeng, XUE Dongwen, LI Zhuohan, et al. Single and double degree-of-freedom acoustic liners under grazing flow: Experiment[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):337-347(in Chinese).
    [25] DANNEMANN M, KUCHER M, KUNZE E, et al. Experimental study of advanced helmholtz resonator liners with increased acoustic performance by utilising material damping effects[J]. Applied Sciences,2018,8(10):1923. doi: 10.3390/app8101923
    [26] SUN G H, ZHANG J H, ZHANG H, et al. Research on acoustic absorption properties of aramid honeycomb composite material reinforced by polyimide foam[J]. Advanced Engineering Materials,2022,24(3):2101158. doi: 10.1002/adem.202101158
    [27] KWAN H W, YU J, ABEYSINGHE A. A review of acoustic treatment design for aircraft engine noise reduction[C]//35th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2006. Washington: Institute of Noise Control Engineering, 2006, 2: 990-999.
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  269
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-07-13
  • 录用日期:  2023-08-09
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回