留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化体系对硅橡胶热老化性能的影响

范在乾 咸日常 边继辉 葛旺泉 邢雅雯 孙丰睿

范在乾, 咸日常, 边继辉, 等. 硫化体系对硅橡胶热老化性能的影响[J]. 复合材料学报, 2024, 41(3): 1259-1269. doi: 10.13801/j.cnki.fhclxb.20230814.004
引用本文: 范在乾, 咸日常, 边继辉, 等. 硫化体系对硅橡胶热老化性能的影响[J]. 复合材料学报, 2024, 41(3): 1259-1269. doi: 10.13801/j.cnki.fhclxb.20230814.004
FAN Zaiqian, XIAN Richang, BIAN Jihui, et al. Effect of vulcanization system on thermal aging property of silicone rubber[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1259-1269. doi: 10.13801/j.cnki.fhclxb.20230814.004
Citation: FAN Zaiqian, XIAN Richang, BIAN Jihui, et al. Effect of vulcanization system on thermal aging property of silicone rubber[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1259-1269. doi: 10.13801/j.cnki.fhclxb.20230814.004

硫化体系对硅橡胶热老化性能的影响

doi: 10.13801/j.cnki.fhclxb.20230814.004
基金项目: 校城融合发展计划项目(2021JSCG0009)
详细信息
    通讯作者:

    咸日常,硕士,教授,博士生导师,研究方向为电气设备在线监测与故障诊断技术 E-mail: xianrc@163.com

  • 中图分类号: TM215;TB332

Effect of vulcanization system on thermal aging property of silicone rubber

Funds: School City Integration Development Plan Project (2021JSCG0009)
  • 摘要: 为了探究不同硫化体系对电缆附件增强绝缘用硅橡胶热老化性能的影响,本文以35 kV电缆附件增强绝缘用硅橡胶为研究对象,利用过氧化物、硅氢加成两种硫化体系分别制作硫化硅橡胶试样并开展热老化试验,对比分析其力学性能和电气性能的变化特征。在热老化前期,两种硫化体系下硅橡胶均发生分子侧链的氧化交联反应和分子链间的再交联反应,交联度增大;热老化后期,交联体系结构和分子链被破坏,交联度变小。研究与测试结果表明:随着热老化时间的增加,硅橡胶试样拉伸强度和断裂伸长率逐渐减小,电导率先减小后增大、随温度升高而增大,相对介电常数逐渐增大、随温度升高而减小,介质损耗角正切逐渐增大、随温度升高而增大,击穿场强呈现先增后降趋势。硅氢加成硫化体系下的硅橡胶一直保持高交联度,在热老化后具备更优的力学性能和电气性能,而过氧化物硫化体系下的硅橡胶在硫化过程中产生强酸性副产物,在热老化后产生强极性基团,致使硅橡胶的热老化性能劣化。

     

  • 图  1  甲基乙烯基硅橡胶结构式

    Figure  1.  Structure formula of methyl vinyl silicone rubber

    图  2  标准II型哑铃片示意图

    Figure  2.  Schematic diagram of standard type II dumbbell plate

    图  3  不同热老化时间硅橡胶试样的力学性能

    Figure  3.  Mechanical properties of silicone rubber samples with different thermal aging time

    图  4  不同热老化时间硅橡胶试样的FTIR图谱

    Figure  4.  FTIR spectra of silicone rubber samples with different thermal aging time

    图  5  不同热老化时间硅橡胶试样的电导率分布

    Figure  5.  Conductivity distribution of silicone rubber samples at different thermal aging time

    γv—Conductivity; T—Temperature

    图  6  不同热老化时间硅橡胶试样的相对介电常数分布

    Figure  6.  Relative dielectric constant distribution of silicone rubber samples at different thermal aging time

    图  7  不同热老化时间硅橡胶试样的介质损耗角正切分布

    Figure  7.  Dielectric loss angle tangent distribution of silicone rubber samples with different thermal aging time

    图  8  不同热老化时间硅橡胶试样的击穿场强威布尔分布

    Figure  8.  Weibull distribution of breakdown field strength of silicone rubber samples at different thermal aging time

    图  9  不同热老化时间硅橡胶的击穿场强分布

    Figure  9.  Breakdown field strength distribution of silicone rubber at different thermal aging time

    图  10  硅橡胶硫化原理

    Figure  10.  Vulcanization principle of silicone rubber

    表  1  各试样的主要成分及质量分数

    Table  1.   Main components and mass fraction of each sample

    MaterialMass fraction/wt%
    DCBPPMHS
    Silicone rubber 100 100
    Silica 30 30
    Structured control agents 5 5
    2,4-dichlorobenzoyl peroxide (DCBP) 1.2 0
    Platinum catalyst 0 0.7
    Polymethyl hydro siloxane (PMHS) 0 0.6
    下载: 导出CSV

    表  2  不同热老化时间硅橡胶试样的热延伸性能

    Table  2.   Thermal elongation properties of silicone rubber samples at different thermal aging time

    Vulcanization
    system
    Thermal
    aging time/
    h
    Thermal
    elongation/
    %
    Permanent
    deformation
    rate/%
    DCBP vulcanized
    silicone rubber
    083.04.0
    168 31.00.5
    336 16.51.5
    504 21.01.0
    672 28.01.0
    PMHS vulcanized
    silicone rubber
    0 18.51.0
    168 15.00.5
    336 16.00.0
    504 17.50.5
    672 19.00.5
    下载: 导出CSV

    表  3  硅橡胶试样的各官能团指数

    Table  3.   Functional group index of each functional group of silicone rubber samples

    Vulcanization
    system
    Thermal
    aging time/h
    Functional group index
    Si—(CH3)2Si—O—SiSi—CH3C—H
    DCBP
    vulcanized
    silicone
    rubber
    08.353.290.481.90
    168 8.854.590.492.26
    336 8.894.440.502.21
    504 8.634.690.471.82
    672 8.803.760.471.87
    PMHS
    vulcanized
    silicone
    rubber
    07.336.230.471.99
    168 8.025.520.502.04
    336 8.656.710.623.22
    504 7.526.420.612.34
    672 6.916.430.491.97
    下载: 导出CSV
  • [1] 胡丽斌, 张传升, 谭 笑, 等. 退役电缆附件微观结构与电荷特性研究[J]. 中国电机工程学报, 2021, 41(2):770-781. doi: 10.13334/j.0258-8013.pcsee.200492

    HU Libin, ZHANG Chuansheng, TAN Xiao, et al. Study on micro-structure and charge characteristics of retired cable accessories[J]. Proceedings of the CSEE,2021,41(2):770-781(in Chinese). doi: 10.13334/j.0258-8013.pcsee.200492
    [2] 尚南强, 陈庆国, 秦君. 纳米TiO2/液体硅橡胶直流电缆附件绝缘复合材料的介电性能[J]. 复合材料学报, 2019, 36(1):104-113.

    SHANG Nanqiang, CHEN Qingguo, QIN Jun. Dielectric properties of nano-TiO2/liquid silicone rubber DC cable accessories insulating composites[J]. Acta Materiae Compositae Sinica,2019,36(1):104-113(in Chinese).
    [3] 邵满智, 赵洪, 李春阳, 等. 紫外光交联低压三元乙丙橡胶电缆绝缘材料配方与性能[J]. 复合材料学报, 2022, 39(12):5922-5933. doi: 10.13801/j.cnki.fhclxb.20211217.003

    SHAO Manzhi, ZHAO Hong, LI Chunyang, et al. Formulation and properties of ultraviolet-crosslinked low voltage EPDM cable insulation materials[J]. Acta Materiae Compositae Sinica,2022,39(12):5922-5933(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211217.003
    [4] 陈杰, 吴世林, 胡丽斌, 等. 退役高压电缆附件绝缘状态及理化性能分析[J]. 电工技术学报, 2021, 36(12):2650-2658. doi: 10.19595/j.cnki.1000-6753.tces.200367

    CHEN Jie, WU Shilin, HU Libin, et al. Analysis on insulation status and physicochemical properties of decommissioned high-voltage cable accessories[J]. Transactions of China Electrotechnical Society,2021,36(12):2650-2658(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.200367
    [5] ZHU B, JIA Z, HU H, et al. Relationship between the interfacial ramped DC breakdown voltage and the morphology of the XLPE/SiR interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):689-697. doi: 10.1109/TDEI.2018.007600
    [6] 陈庆国, 尚南强, 魏昕喆. 热老化对液体硅橡胶材料介电性能及力学特性的影响研究[J]. 电机与控制学报, 2020, 24(4):141-148. doi: 10.15938/j.emc.2020.04.016

    CHEN Qingguo, SHANG Nanqiang, WEI Xinzhe. Effect of thermal aging on dielectric properties and mechanical properties of liquid silicone rubber materials[J]. Electric Machines and Control,2020,24(4):141-148(in Chinese). doi: 10.15938/j.emc.2020.04.016
    [7] 迟庆国, 李振, 张天栋, 等. 钛酸铜钙纳米纤维/液体硅橡胶复合介质非线性电导性能[J]. 复合材料学报, 2019, 36(10):2247-2258. doi: 10.13801/j.cnki.fhclxb.20181119.004

    CHI Qingguo, LI Zhen, ZHANG Tiandong, et al. Nonlinear conductivity of copper calcium titanate nanofiber/liquid silicone rubber composite Media[J]. Acta Materiae Compositae Sinica,2019,36(10):2247-2258(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181119.004
    [8] 王若丞, 贺云逸, 康洪玮, 等. 电缆接头绝缘用硅橡胶热老化及超声特性[J]. 高电压技术, 2021, 47(9):3181-3188. doi: 10.13336/j.1003-6520.hve.20201160

    WANG Ruocheng, HE Yunyi, KANG Hongwei, et al. Thermal aging and ultrasonic characteristics of silicone rubber for cable joint insulation[J]. High Voltage Technology,2021,47(9):3181-3188(in Chinese). doi: 10.13336/j.1003-6520.hve.20201160
    [9] 王明英, 王健, 杜思辰, 等. 硅橡胶硫化体系研究进展[J]. 合成橡胶工业, 2022, 45(3):244-252. doi: 10.19908/j.cnki.ISSN1000-1255.2022.03.0244

    WANG Mingying, WANG Jian, DU Sichen, et al. Research progress of vulcanization system of silicone rubber[J]. Synthetic Rubber Industry,2022,45(3):244-252(in Chinese). doi: 10.19908/j.cnki.ISSN1000-1255.2022.03.0244
    [10] 李浩. 变形翼硅橡胶柔性蒙皮材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    LI Hao. Study on the preparation and properties of sili-cone rubber flexible skin material for deformed wing[D]. Harbin: Harbin Institute of Technology, 2021.
    [11] ULLAH R, AKBAR M. Lifetime estimation based on surface degradation and characterization of HTV silicone-rubber based composites for HVAC and HVDC transmission[J]. CSEE Journal of Power and Energy Systems, 2023, 9(2): 751-758.
    [12] 崔永岩, 朱晓蒙, 杨翰, 等. 丙烯腈-丁二烯-苯乙烯/甲基乙烯基硅橡胶共混体系的动态硫化及性能[J]. 高分子材料科学与工程, 2018, 34(11):74-78, 85. doi: 10.16865/j.cnki.1000-7555.2018.11.013

    CUI Yongyan, ZHU Xiaomeng, YANG Han, et al. Dynamic vulcanization and properties of acryloni-trile-butadiene-styrene/methylvinyl silicone rubber blends[J]. Polymer Materials Science and Engineering,2018,34(11):74-78, 85(in Chinese). doi: 10.16865/j.cnki.1000-7555.2018.11.013
    [13] 王凯, 范襄, 陈萌炯. 白炭黑增强型硅橡胶的组成及抗原子氧性能分析[J]. 高等学校化学学报, 2020, 41(3):548-555. doi: 10.7503/cjcu20190517

    WANG Kai, FAN Xiang, CHEN Mengjiong. Analysis on the composition and atomic oxygen resistance of silica reinforced silicone rubber[J]. Chemical Journal of Chinese Universities,2020,41(3):548-555(in Chinese). doi: 10.7503/cjcu20190517
    [14] 张天萍, 甄卫军, 赵玲. 配方对有机硅橡胶非等温硫化动力学的影响[J]. 高校化学工程学报, 2020, 34(1):222-229. doi: 10.3969/j.issn.1003-9015.2020.01.028

    ZHANG Tianping, ZHEN Weijun, ZHAO Ling. Effect of formulation on non-isothermal vulcanization kinetics of sili-cone rubber[J]. Journal of Chemical Engineering in Chinese Universities,2020,34(1):222-229(in Chinese). doi: 10.3969/j.issn.1003-9015.2020.01.028
    [15] 周远翔, 张征辉, 张云霄, 等. 热-力联合老化对硅橡胶交联网络及力学和耐电特性的影响[J]. 电工技术学报, 2022, 37(17):4474-4486.

    ZHOU Yuanxiang, ZHANG Zhenghui, ZHANG Yunxiao, et al. Effects of combined thermal and mechanical aging on mechanical and electrical resistance of silicon rubber crosslinked networks[J]. Transactions of China Electrotechnical Society,2022,37(17):4474-4486(in Chinese).
    [16] 王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2019, 37(12):3079-3090.

    WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of molecular interface of SiO2-methylvinylsilicone rubber modified by silane coupling agent[J]. Acta Materiae Compositae Sinica,2019,37(12):3079-3090(in Chinese).
    [17] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验: GB/T 3512—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Hot air accelerated aging and heat resistance test of vulcanized rubber or thermoplastic rubber: GB/T 3512—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [18] International Organization for Standardization. Rubber, vulcanized or thermoplastic—Estimation of life-time and maximum temperature of use: ISO 11346—2014[S]. Geneva: ISO, 2023.
    [19] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [20] 中国国家标准化管理委员会. 电缆和光缆绝缘和护套材料通用试验方法: GB/T 2951.21—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. General test method for insulation and sheathing materials of cables and optical cables: GB/T 2951.21—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21] 中国国家标准化管理委员会. 绝缘材料电气强度试验方法: GB/T 1408.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Test method for electrical strength of insulating materials: GB/T 1408.1—2016[S]. Beijing: Standards Press of China, 2016(in Chinese).
    [22] 吕鸿, 马佳炜, 杨贤, 等. 热老化对220 kV硅橡胶电缆接头绝缘材料介电性能的影响[J]. 绝缘材料, 2019, 52(2):47-51.

    LYU Hong, MA Jiawei, YANG Xian, et al. Effect of thermal aging on dielectric properties of 220 kV silicone rubber cable joint insulation materials[J]. Journal of Insulation Materials,2019,52(2):47-51(in Chinese).
    [23] 邵光磊, 秦福宁, 赵金辉, 等. 电缆中间接头硅橡胶绝缘的电气特性研究[J]. 绝缘材料, 2020, 53(10):38-43. doi: 10.16790/j.cnki.1009-9239.im.2020.10.006

    SHAO Guanglei, QIN Funing, ZHAO Jinhui, et al. Research on electrical characteristics of silicone rubber insulation of cable intermediate joint[J]. Journal of Insulating Mate-rials,2020,53(10):38-43(in Chinese). doi: 10.16790/j.cnki.1009-9239.im.2020.10.006
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  152
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-07-20
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回