留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MOF材料的涂层应用与机制研究进展

杜娟 汪鸿宇 石玉超 宋海鹏

杜娟, 汪鸿宇, 石玉超, 等. 基于MOF材料的涂层应用与机制研究进展[J]. 复合材料学报, 2024, 41(3): 1093-1108. doi: 10.13801/j.cnki.fhclxb.20230814.003
引用本文: 杜娟, 汪鸿宇, 石玉超, 等. 基于MOF材料的涂层应用与机制研究进展[J]. 复合材料学报, 2024, 41(3): 1093-1108. doi: 10.13801/j.cnki.fhclxb.20230814.003
DU Juan, WANG Hongyu, SHI Yuchao, et al. Research progress on coating application and mechanism based on MOF materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1093-1108. doi: 10.13801/j.cnki.fhclxb.20230814.003
Citation: DU Juan, WANG Hongyu, SHI Yuchao, et al. Research progress on coating application and mechanism based on MOF materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1093-1108. doi: 10.13801/j.cnki.fhclxb.20230814.003

基于MOF材料的涂层应用与机制研究进展

doi: 10.13801/j.cnki.fhclxb.20230814.003
基金项目: 国家自然科学基金面上项目(11972364);中央高校基本科研业务费项目中国民航大学专项(3122023047)
详细信息
    通讯作者:

    杜娟,博士,讲师,硕士生导师,研究方向为功能涂层制备和性能研究 E-mail: dujuan247@163.com

  • 中图分类号: TB333

Research progress on coating application and mechanism based on MOF materials

Funds: National Natural Science Foundation of China (11972364); Fundamental Research Funds for the Central Universities Special Project of Civil Aviation University of China (3122023047)
  • 摘要: 金属有机骨架(MOF)作为一种新型多孔晶体材料,因其具有高孔隙率、结构多样、化学结构可控等特点可被作为纳米粒子和载体使用。基于MOF材料的涂层可兼具MOF本身的优点,但基于MOF材料的涂层应用和机制研究的综述性论文不多。本文针对基于MOF材料的涂层国内外研究现状进行了介绍,重点阐述了基于MOF材料的涂层防/除冰应用(超疏水表面和光滑液体注入多孔表面(SLIPS))、防腐应用(MOF材料作为纳米粒子和载体)和抗菌应用(基于金属离子释放、基于光动力(PDT)和基于光热(PTT)),并归纳出不同涂层的防/除冰机制(降低水的凝固温度和减少冰的黏附)、防腐机制(直接物理阻隔或生成化合物而达到阻隔效果)和抗菌机制(对真核细胞具有弱毒性的金属离子达到抗菌效果、活性氧(ROS)在光照射下激活达到抑菌效果和通过吸收外界光产生热量,随温度升高而达到抗菌效果)。并对基于MOF材料的涂层面临的关键挑战、潜在应用和发展前景进行了展望。

     

  • 图  1  (a)超疏水复合涂层制备过程;(b)不同基体的阻抗模量|Z|与频率关系的Bode图[19]

    POTS—1H, 1H, 2H, 2H-perfluoroalkyltriethoxysilanes; EP—Epoxy epoxide; PA—Polyamide; ZIF—Zeolitic imidazolate framework

    Figure  1.  (a) Superhydrophobic composite coating preparation process; (b) Bode plots of different matrix's relationship between impedance modulus |Z| and frequency[19]

    图  2  Cu基板上制备基于金属有机骨架的生物液浸表面(MOF-LIS)涂层的原理图[34]

    Figure  2.  Schematic diagram of the preparation of bio-liquid immersion surfaces based on metal-organic frameworks (MOF-LIS) on Cu substrates[34]

    图  3  超疏水涂层的抗结冰机制[37]

    APTES—3-aminopropyl triethoxysilane; L/L—Layer by layer; DHTPA—2, 3-dihydroxyterephthalic acid

    Figure  3.  Anti-icing mechanism of superhydrophobic coatings[37]

    图  4  液体注入微纳米结构MOF涂层(LIMNSMC)的抗结冰机制[41]

    Figure  4.  Anti-icing mechanism of liquid-infused micro-nanostructured MOF coatings (LIMNSMC)[41]

    图  5  超疏水表面(SHS) (a)和光滑液体注入多孔表面(SLIPS) (b)的防结冰机制示意图[42]

    Figure  5.  Schematic diagram of anti-icing mechanism of superhydrophobic surface (SHS) (a) and smooth liquid-injected porous surfaces (SLIPS) (b)[42]

    图  6  裸Al板、原位水热生长制备的ZnAl-NO3层状双氢氧化合物(LDH)缓冲层、纯ZIF-8涂层和ZIF-8-ZnAl-NO3 LDH复合涂层的DC极化曲线[48]

    E—Electrode potential; I—Current density

    Figure  6.  DC polarization curves for bare Al plates, ZnAl-NO3 layered double hydroxides (LDH) buffer layers prepared by in situ hydrothermal growth , pure ZIF-8 coatings and ZIF-8-ZnAl-NO3 LDH composite coatings[48]

    图  7  叶酸改性铜基MOF和聚己内酯在镁合金上制备防腐涂层[52]

    H3BTC—Benzene tricarboxylic acid; FA—Folic acid; PCL—Polycaprolactone

    Figure  7.  Folic acid modified copper-based MOF and polycaprolactone prepared anti-corrosion coating on magnesium alloy[52]

    图  8  ZBT纳米材料的合成过程示意图[53]

    ZBT—Tannic acid composite; BTA—Benzotriazole; 2-min—2-methylimidazole; ZB—BTA@ZIF-8

    Figure  8.  Schematic diagram of the synthesis process of ZBT nanomaterials[53]

    图  9  (a)不同涂层在3.5wt%NaCl溶液中的|Z|0.01 Hz的值;不同涂层的防腐机制:(b) EP涂层;(c)普通填料涂层;(d) ZIF-8涂层[54]

    Z0, Z1, Z3, Z5—Mass fraction of ZIF-8 in epoxy resin is 0wt%, 1wt%, 3wt%, 5wt%

    Figure  9.  (a) |Z|0.01 Hz value of different coatings in 3.5wt%NaCl solution; Anti-corrosion mechanism of different coatings: (b) EP coating; (c) Ordinary filler coating; (d) ZIF-8 coating[54]

    图  10  MOF作为载体添加到防腐涂层的防腐机制示意图[58]

    TEOS—Tetraethoxysilane

    Figure  10.  Schematic diagram of the anti-corrosion mechanism of MOF added to the anti-corrosion coating as a carrier[58]

    图  11  250、500和1000 mg·L−1浓度的HmIm、ZnO和ZIF-8在LB培养基中24 h后的抗菌效果[65]

    LB—Luria bertani; HmIm—2-methylimidazole

    Figure  11.  Antibacterial efficacy of HmIm, ZnO, and ZIF-8 at 250, 500, and 1000 mg·L−1 concentrations after 24 h in a LB medium[65]

    图  12  不同浓度万古霉素(Van)-嘌呤配体(PCN)-224在LED (4 mW/cm2)照射下培养20 min后金黄色葡萄球菌的细菌存活率[71]

    Figure  12.  Bacterial viabilities of S. aureus incubated with different concentrations of Vancomycin (Van) -Purine ligand (PCN)-224 under LED irradiation (4 mW/cm2) for 20 min[71]

    图  13  不同治疗后的肿瘤生长曲线[72]

    NMOF-PEG—Nanoscale metal-organic frameworks polyethylene glycol

    Figure  13.  Tumor growth curves after different treatments[72]

    图  14  不同处理下肿瘤生长曲线[76]

    P-MOF—Porphyrin-MOF

    Figure  14.  Tumor growth curves under different treatments[76]

    图  15  Ag/Co-TCPP NS抗菌机制示意图[78]

    TCPP—Tetrakis(4-carboxyphenyl)porphyrin; BPY—Bipyridine; DMF—Dimethylformamide; NSs—Nanosheets; NPs—Nanoparticles

    Figure  15.  Schematic diagram of antibacterial mechanism of Ag/Co-TCPP NS[78]

    图  16  硝普钠(SNP)@MOF@Au-Mal 抗菌机制示意图[80]

    SNO—S nitroso thiols; ROS—Reactive oxygen species; NIR—Near infrared

    Figure  16.  Schematic illustration of antibacterial mechanism of sodium nitroprusside (SNP)@MOF@Au-Mal[80]

    图  17  (a)不同浓度AgNO3、PCN-224-透明质酸(HA)和PCN-224-Ag-HA在光照射下MRSA菌株的存活率;(b) PCN-224-Ag-HA纳米剂的制备及其抗菌机制示意图[81]

    L—Light; PCN—Porous coordination network

    Figure  17.  (a) Survival rates of MRSA strain at different concentrations of AgNO3, PCN-224-hyaluronic acid (HA) and PCN-224-Ag-HA under light irradiation; (b) Preparation of PCN-224-Ag-HA nanoagen and schematic diagram of antibacterial mechanism[81]

    图  18  ZnO-CNP-TRGL纳米碳的抑菌机制[86]

    TRGL—Commercial ZnO nanoparticles; CNP—Carbon nanoparticles

    Figure  18.  Bacteriostatic mechanism of ZnO-CNP-TRGL nanocarbon[86]

  • [1] JIANG C, CAO Y, XIAO G, et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates[J]. RSC Advances,2017,7(13):7531-7539. doi: 10.1039/C6RA25841G
    [2] WANG S, MCGUIRK C M, D'AQUINO A, et al. Metal-organic framework nanoparticles[J]. Advanced Materials,2018,30(37):1800202. doi: 10.1002/adma.201800202
    [3] PRAVEEN B M, VENKATESHA T V, NAIK Y A, et al. Corrosion studies of carbon nanotubes-Zn composite coating[J]. Surface and Coatings Technology,2007,201(12):5836-5842. doi: 10.1016/j.surfcoat.2006.10.034
    [4] DING R, LI W, WANG X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide[J]. Journal of Alloys and Compounds,2018,764:1039-1055. doi: 10.1016/j.jallcom.2018.06.133
    [5] MATIN E, ATTAR M M, RAMEZANZADEH B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate[J]. Progress in Organic Coatings,2015,78:395-403. doi: 10.1016/j.porgcoat.2014.07.004
    [6] CAI G, YAN P, ZHANG L, et al. Metal-organic framework-based hierarchically porous materials: Synthesis and applications[J]. Chemical Reviews,2021,121(20):12278-12326. doi: 10.1021/acs.chemrev.1c00243
    [7] KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews,2014,43(16):5415-5418. doi: 10.1039/C4CS90059F
    [8] FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J]. Journal of the American Chemical Society,2012,134(36):15016-15021. doi: 10.1021/ja3055639
    [9] CAO K, YU Z, YIN D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances[J]. Progress in Organic Coatings,2020,143:105629. doi: 10.1016/j.porgcoat.2020.105629
    [10] MENG J, LIU X, NIU C, et al. Advances in metal-organic framework coatings: Versatile synthesis and broad applications[J]. Chemical Society Reviews,2020,49(10):3142-3186. doi: 10.1039/C9CS00806C
    [11] SEIDI F, JOUYANDEH M, TAGHIZADEH M, et al. Metal-organic framework (MOF)/epoxy coatings: A review[J]. Materials,2020,13(12):2881. doi: 10.3390/ma13122881
    [12] HOSKINS B F, ROBSON R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society,1989,111(15):5962-5964. doi: 10.1021/ja00197a079
    [13] FUJITA M, KWON Y J, WASHIZU S, et al. Preparation, clathrationability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4'-bipyridine[J]. Journal of the American Chemical Society,1994,116(3):1151-1152. doi: 10.1021/ja00082a055
    [14] KONDO M, YOSHITOMI T, MATSUZAKA H, et al. Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4xH2O}n(M=Co, Ni, Zn)[J]. Angewandte Chemie International Edition in English,1997,36(16):1725-1727. doi: 10.1002/anie.199717251
    [15] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622) : 1127-1129.
    [16] KUPPLER R J, TIMMONS D J, FANG Q R, et al. Potential applications of metal-organic frame works[J]. Coordination Chemistry Reviews,2009,253(23-24):3042-3066. doi: 10.1016/j.ccr.2009.05.019
    [17] WANG Z, COHEN S M. Postsynthetic covalent modification of a neutral metal-organic framework[J]. Journal of the American Chemical Society,2007,129(41):12368-12369. doi: 10.1021/ja074366o
    [18] LIANG K, RICHARDSON J J, CUI J, et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells[J]. Advanced Materials,2016,28(36):7910-7914. doi: 10.1002/adma.201602335
    [19] CHEN H, WANG F, FAN H, et al. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research[J]. Chemical Engineering Journal,2021,408:127343. doi: 10.1016/j.cej.2020.127343
    [20] 裴震, 郭建栋, 张倩, 等. 金属-有机骨架抗菌复合材料与纤维的研究进展及应用[J]. 复合材料学报, 2021, 38(8):2396-2403. doi: 10.13801/j.cnki.fhclxb.20210507.001

    PEI Zhen, GUO Jiandong, ZHANG Qian, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fibers[J]. Acta Materiae Compositae Sinica,2021,38(8):2396-2403(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210507.001
    [21] 陈芬, 杜春慧, 胡锦泰, 等. MOF原位生长改性聚对氯甲基苯乙烯-聚偏氟乙烯正渗透复合膜及其对乳化油废水的抗污染性[J]. 复合材料学报, 2023, 40(4):2075-2084. doi: 10.13801/j.cnki.fhclxb.20220606.002

    CHEN Fen, DU Chunhui, HU Jintai, et al. MOF in-situ growth modified poly(p-chloromethyl styrene)-polyvinylidene fluoride forward osmosis composite membrane and its anti-fouling performance for emulsified oil wastewater[J]. Acta Materiae Compositae Sinica,2023,40(4):2075-2084(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220606.002
    [22] 陈柏瑜, 胡天丁, 陕绍云, 等. MOF基的光解水制氢催化剂研究进展[J]. 复合材料学报, 2022, 39(5):2073-2088. doi: 10.13801/j.cnki.fhclxb.20211011.001

    CHEN Boyu, HU Tianding, SHAN Shaoyun, et al. Research advances of MOF-based catalyst for photohydrolysis for hydrogen production[J]. Acta Materiae Compositae Sinica,2022,39(5):2073-2088(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211011.001
    [23] LYU J, SONG Y, JIANG L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano,2014,8(4):3152-3169. doi: 10.1021/nn406522n
    [24] BROEREN A P, LEE S, CLARK C. Aerodynamic effects of anti-icing fluids on a thin high-performance wing section[J]. Journal of Aircraft,2016,53(2):451-462. doi: 10.2514/1.C033384
    [25] FIKKE S M, KRISTJÁNSSON J E, KRINGLEBOTN NYGA ARD B E. Modern meteorology and atmospheric icing[J]. Atmospheric Icing of Power Networks, 2008: 1-29.
    [26] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology,2018,341:40-56. doi: 10.1016/j.surfcoat.2017.11.053
    [27] CAO L, JONES A K, SIKKA V K, et al. Anti- icing superhydrophobic coatings[J]. Langmuir,2009,25(21):12444-12448. doi: 10.1021/la902882b
    [28] NGUYEN-TRI P, TRAN H N, PLAMONDON C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review[J]. Progress in Organic Coatings,2019,132:235-256. doi: 10.1016/j.porgcoat.2019.03.042
    [29] SIMPSON J T, HUNTER S R, AYTUG T. Superhydrophobic materials and coatings: A review[J]. Reports on Progress in Physics,2015,78(8):086501. doi: 10.1088/0034-4885/78/8/086501
    [30] YE Y, LIU Z, LIU W, et al. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel[J]. Chemical Engineering Journal,2018,348:940-951. doi: 10.1016/j.cej.2018.02.053
    [31] ZHU G, SU J, YIN C, et al. Constructing a robust ZIF-7 based superhydrophobic coating with the excellent performance in self-cleaning, anti-icing, anti-biofouling and anti-corrosion[J]. Applied Surface Science,2023,622:156907. doi: 10.1016/j.apsusc.2023.156907
    [32] ZHANG Y, GUO H, GAO J, et al. Self-lubricated anti-icing MOF coating with long-term durability[J]. Progress in Organic Coatings,2021,151:106089.
    [33] FANG X, LIU Y, LEI S. Slippery liquid-infused porous surface based on MOFs with excellent stability[J]. Chemical Physics Letters,2021,771:138470. doi: 10.1016/j.cplett.2021.138470
    [34] YU Y, WEI Y, LI B, et al. Bioinspired metal-organic framework-based liquid-infused surface (MOF-LIS) with corrosion and biofouling prohibition properties[J]. Surfaces and Interfaces,2022,34:102363.
    [35] FANG X, LIU Y, LEI S, et al. Novel SLIPS based on the photo-thermal MOFs with enhanced anti-icing/de-icing properties[J]. RSC Advances,2022,12(22):13792-13796.
    [36] WU B, CUI X, JIANG H, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science,2021,590:301-310. doi: 10.1016/j.jcis.2021.01.054
    [37] SINGH V, MEN X, TIWARI M K. Transparent and robust amphiphobic surfaces exploiting nanohierarchical surface-grown metal-organic frameworks[J]. Nano Letters, 2021, 21(8): 3480-3486.
    [38] LIN Y, CHEN H, WANG G, et al. Recent progress in preparation and anti-icing applications of superhydrophobic coatings[J]. Coatings,2018,8(6):208. doi: 10.3390/coatings8060208
    [39] WU X J, LI Q X, HUANG J, et al. Theoretical study on the electron transport properties of single molecular bridge[J]. Acta Physico-Chimica Sinica,2004,20:995-1002.
    [40] HEYDARIAN S, JAFARI R, MOMEN G. Recent progress in the anti-icing performance of slippery liquid-infused surfaces[J]. Progress in Organic Coatings,2021,151:106096. doi: 10.1016/j.porgcoat.2020.106096
    [41] GAO J, ZHANG Y, WEI W, et al. Liquid-infused micro-nanostructured MOF coatings (LIMNSMCs) with high anti-icing performance[J]. ACS Applied Materials & Interfaces,2019,11(50):47545-47552.
    [42] LONG Y, YIN X, MU P, et al. Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates[J]. Chemical Engineering Journal,2020,401:126137. doi: 10.1016/j.cej.2020.126137
    [43] MA L, ZHANG Z, LIU Y, et al. An experimental study on the durability of icephobic slippery liquid-infused porous surfaces (SLIPS) pertinent to aircraft anti-/de-icing[C]. 2018 Atmospheric and Space Environments Conference. Atlanta. 2018: 3654.
    [44] ADIBZADEH E, MIRABEDINI S M, BEHZA DNASAB M, et al. A novel two-component self-healing coating comprising vinylester resin-filled microcapsules with prolonged anticorrosion performance[J]. Progress in Organic Coatings,2021,154:106220. doi: 10.1016/j.porgcoat.2021.106220
    [45] MUSARURWA H, TAVENGWA N T. Smart metal-organic framework (MOF) composites and their applications in environmental remediation[J]. Materials Today Communications, 2022, 33: 104823.
    [46] SANCHEZ C, JULIÁN B, BELLEVILLE P, et al. Applications of hybrid organic-inorganic nanocomposites[J]. Journal of Materials Chemistry,2005,15(35-36):3559-3592. doi: 10.1039/b509097k
    [47] JIANG L, DONG Y, YUAN Y, et al. Recent advances of metal-organic frameworks in corrosion protection: From synthesis to applications[J]. Chemical Engineering Journal,2022,430:132823. doi: 10.1016/j.cej.2021.132823
    [48] ZHANG M, LIU Y. Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization[J]. New Journal of Chemistry,2020,44(7):2941-2946. doi: 10.1039/C9NJ05998A
    [49] TARZANAGH Y J, SEIFZADEH D, RAJABA LIZADEH Z, et al. Sol-gel/MOF nanocomposite for effective protection of 2024 aluminum alloy against corrosion[J]. Surface and Coatings Technology,2019,380:125038. doi: 10.1016/j.surfcoat.2019.125038
    [50] SHAHINI M H, TAHERI N, MOHAMMADLOO H E, et al. A comprehensive overview of nano and micro carriers aiming at curtailing corrosion progression[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,126:252-269. doi: 10.1016/j.jtice.2021.06.053
    [51] TIAN H, LI W, LIU A, et al. Controlled delivery of multi-substituted triazole by metal-organic framework for efficient inhibition of mild steel corrosion in neutral chloride solution[J]. Corrosion Science,2018,131:1-16. doi: 10.1016/j.corsci.2017.11.010
    [52] ZHENG Q, LI J, YUAN W, et al. Metal-organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of Mg alloy[J]. ACS Sustainable Chemistry & Engineering,2019,7(21):18114-18124.
    [53] YANG C, XU W, MENG X, et al. A pH-responsive hydrophilic controlled release system based on ZIF-8 for self-healing anticorrosion application[J]. Chemical Engineering Journal,2021,415:128985. doi: 10.1016/j.cej.2021.128985
    [54] DUAN S, DOU B, LIN X, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,624:126836. doi: 10.1016/j.colsurfa.2021.126836
    [55] KESHMIRI N, NAJMI P, RAMEZANZADEH M, et al. Designing an eco-friendly lanthanide-based metal organic framework (MOF) assembled graphene-oxide with superior active anti-corrosion performance in epoxy composite[J]. Journal of Cleaner Production,2021,319:128732. doi: 10.1016/j.jclepro.2021.128732
    [56] CAO J, GUO C, GUO X, et al. Inhibition behavior of synthesized ZIF-8 derivative for copper in sodium chloride solution[J]. Journal of Molecular Liquids,2020,311:113277. doi: 10.1016/j.molliq.2020.113277
    [57] HE Z, LIN H, ZHANG X, et al. Self-healing epoxy compo-site coating based on polypyrrole@MOF nanoparticles for the long-efficiency corrosion protection on steels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,657:130601. doi: 10.1016/j.colsurfa.2022.130601
    [58] CAO K, YU Z, YIN D. Preparation of Ce-MOF@TEOS to enhance the anti-corrosion properties of epoxy coatings[J]. Progress in Organic Coatings,2019,135:613-621. doi: 10.1016/j.porgcoat.2019.06.015
    [59] XIONG L, LIU J, YU M, et al. Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ ZIF-8/graphene oxide two-dimensional nanocomposites[J]. Corrosion Science,2019,146:70-79. doi: 10.1016/j.corsci.2018.10.016
    [60] MOHAMMADPOUR Z, ZARE H R. Fabricati on of a pH-sensitive epoxy nanocom posite coating based on a Zn-BTC metal-organic framework containing benzotriazole as a smart corrosion inhibitor[J]. Crystal Growth & Design,2021,21(7):3954-3966.
    [61] DEHGHANI A, SANAEI Z, FEDEL M, et al. Fabrication of an intelligent anti-corrosion silane film using a MoO42− loaded micro/mesoporous ZIF-67-MOF/multi-walled-CNT/APTES core-shell nano-container[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,656:130511. doi: 10.1016/j.colsurfa.2022.130511
    [62] LIU Y, ZHOU L, DONG Y, et al. Recent developments on MOF-based platforms for antibacterial therapy[J]. RSC Medicinal Chemistry,2021,12(6):915-928. doi: 10.1039/D0MD00416B
    [63] SUN C Y, QIN C, WANG X L, et al. Metal-organic frameworks as potential drug delivery systems[J]. Expert Opinion on Drug Delivery,2013,10(1):89-101. doi: 10.1517/17425247.2013.741583
    [64] SHEN M, FORGHANI F, KONG X, et al. Antibacterial applications of metal-organic frameworks and their compo-sites[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1397-1419. doi: 10.1111/1541-4337.12515
    [65] TAHERI M, ASHOK D, SEN T, et al. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties[J]. Chemical Engineering Journal,2021,413:127511. doi: 10.1016/j.cej.2020.127511
    [66] AGUADO S, QUIRÓS J, CANIVET J, et al. Antimicrobial activity of cobalt imidazolate metal-organic frameworks[J]. Chemosphere, 2014, 113: 188-192.
    [67] CHAKRABORTY D, MUSIB D, SAHA R, et al. Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity[J]. Materials Today Chemistry,2022,24:100882. doi: 10.1016/j.mtchem.2022.100882
    [68] ARYANEJAD S, BAGHERZADE G, MOUDI M. Design and development of novel Co-MOF nanostructures as an excellent catalyst for alcohol oxidation and henry reaction, with a potential antibacterial activity[J]. Applied Organometallic Chemistry,2019,33(6):e4820. doi: 10.1002/aoc.4820
    [69] HU X, ZHANG H, WANG Y, et al. Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives[J]. Chemical Engineering Journal, 2022, 450(3): 138129.
    [70] PERNI S, PROKOPOVICH P, PRATTEN J, et al. Nanoparticles: Their potential use in antibacterial photodynamic therapy[J]. Photochemical & Photobiological Sciences,2011,10:712-720.
    [71] CHEN L J, LIU Y Y, ZHAO X, et al. Vancomycin-functionalized porphyrinic metal-organic framework PCN-224 with enhanced antibacterial activity against staphylococcus aureus[J]. Chemistry–An Asian Journal,2021,16(15):2022-2026. doi: 10.1002/asia.202100546
    [72] LIU J, YANG Y, ZHU W, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment[J]. Biomaterials,2016,97:1-9. doi: 10.1016/j.biomaterials.2016.04.034
    [73] LIANG Z, LI X, CHEN X, et al. Fe/MOF based platform for NIR laser induced efficient PDT/PTT of cancer[J]. Frontiers in Bioengineering and Biotechnology,2023,11:1156079. doi: 10.3389/fbioe.2023.1156079
    [74] ZHONG Y, ZHENG X T, LI Q, et al. Antibody conjugated Au/Ir@Cu/Zn-MOF probe for bacterial lateral flow immunoassay and precise synergistic antibacterial treatment[J]. Biosensors and Bioelectronics,2023,224:115033. doi: 10.1016/j.bios.2022.115033
    [75] JIANG W, ZHANG H, WU J, et al. CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34513-34523.
    [76] WANG L, QU X, ZHAO Y, et al. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35228-35237.
    [77] KIM D, PARK K W, PARK J T, et al. Photoactive MOF-derived bimetallic silver and cobalt nanocomposite with enhanced antibacterial activity[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 22903-22914.
    [78] LI X, ZHAO X, CHU D, et al. Silver nanoparticle-decorated 2D Co-TCPP MOF nano sheets for synergistic photodynamic and silver ion antibacterial[J]. Surfaces and Interfaces,2022,33:102247. doi: 10.1016/j.surfin.2022.102247
    [79] YOUGBARÉ S, MUTALIK C, OKORO G, et al. Emerging trends in nanomaterials for antibacterial applications[J]. International Journal of Nanomedicine,2021,16:5831. doi: 10.2147/IJN.S328767
    [80] WU Y, DENG G, JIANG K, et al. Photothermally triggered nitric oxide nanogenerator targeting type IV pilifor precise therapy of bacterial infections[J]. Biomaterials,2021,268:120588. doi: 10.1016/j.biomaterials.2020.120588
    [81] ZHANG Y, SUN P, ZHANG L, et al. Silver-infused porphyrinic metal-organic framework: Surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection[J]. Advanced Functional Materials,2019,29(11):1808594. doi: 10.1002/adfm.201808594
    [82] HUANG K, LI F, YUAN K, et al. A MOF-armored zinc-peroxide nanotheranostic platform for eradicating drug resistant bacteria via image-guided and in situ activated photodynamic therapy[J]. Applied Materials Today,2022,28:101513. doi: 10.1016/j.apmt.2022.101513
    [83] CHEN M, LONG Z, DONG R, et al. Titanium Incorporation into Zr-porphyrinic metal-organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens[J]. Small,2020,16(7):1906240. doi: 10.1002/smll.201906240
    [84] ZHOU C, PENG C, SHI C, et al. Mitochondria-specific aggregation-induced emission luminogens for selective photodynamic killing of fungi and efficacious treatment of keratitis[J]. ACS Nano,2021,15(7):12129-12139. doi: 10.1021/acsnano.1c03508
    [85] BAI X, YANG Y, ZHENG W, et al. Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: Progress and perspectives[J]. Materials Chemistry Frontiers,2023,7:355-380. doi: 10.1039/D2QM01141G
    [86] YANG Y, DENG Y, HUANG J, et al. Size-transformable metal-organic framework-derived nanocarbons for localized chemo-photot hermal bacterial ablation and wound disinfection[J]. Advanced Functional Materials,2019,29(33):1900143. doi: 10.1002/adfm.201900143
    [87] XIAO Y, XU M, LYU N, et al. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy[J]. Acta Biomaterialia,2021,122:291-305. doi: 10.1016/j.actbio.2020.12.045
    [88] ZHAO X, HE X, HOU A, et al. Growth of Cu2O nanoparticles on two-dimensional Zr-ferrocene-metal-organic framework nanosheets for photothermally enhanced chemodynamic antibacterial therapy[J]. Inorganic Che-mistry,2022,61(24):9328-9338. doi: 10.1021/acs.inorgchem.2c01091
    [89] YAO J, LIU Y, WANG J, et al. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation[J]. Biomaterials,2019,195:51-62. doi: 10.1016/j.biomaterials.2018.12.029
    [90] WANG Q, JI Y, SHI J, et al. NIR-driven water splitting H2 production nanoplatform for H2-mediated cascade-amplifying synergetic cancer therapy[J]. ACS Applied Materials & Interfaces,2020,12(21):23677-23688.
    [91] YOUGBARÉ S, MUTALIK C, KRISNAWATI D I, et al. Nanomaterials for the photothermal killing of bacteria[J]. Nanomaterials,2020,10(6):1123. doi: 10.3390/nano10061123
  • 加载中
图(18)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  279
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-07-17
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回