留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP输电塔T形节点抗弯承载力

陈勇 许金一 谢芳 冯炳 王慧敏 沈国辉

陈勇, 许金一, 谢芳, 等. GFRP输电塔T形节点抗弯承载力[J]. 复合材料学报, 2024, 41(5): 2610-2623. doi: 10.13801/j.cnki.fhclxb.20230810.003
引用本文: 陈勇, 许金一, 谢芳, 等. GFRP输电塔T形节点抗弯承载力[J]. 复合材料学报, 2024, 41(5): 2610-2623. doi: 10.13801/j.cnki.fhclxb.20230810.003
CHEN Yong, XU Jinyi, XIE Fang, et al. Flexural bearing capacity of T-shaped joints in GFRP transmission towers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2610-2623. doi: 10.13801/j.cnki.fhclxb.20230810.003
Citation: CHEN Yong, XU Jinyi, XIE Fang, et al. Flexural bearing capacity of T-shaped joints in GFRP transmission towers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2610-2623. doi: 10.13801/j.cnki.fhclxb.20230810.003

GFRP输电塔T形节点抗弯承载力

doi: 10.13801/j.cnki.fhclxb.20230810.003
基金项目: 国家自然科学基金(51878607;51838012);国网浙江省电力公司集体企业科技项目(SX-JT-KJ-2018-01);浙江省自然科学基金青年项目(LQ17 E080010)
详细信息
    通讯作者:

    谢芳,博士,副教授,硕士生导师,研究方向为复合材料组合结构、数字化结构设计等 E-mail: xiefangusx@163.com

  • 中图分类号: TB332;TM753

Flexural bearing capacity of T-shaped joints in GFRP transmission towers

Funds: National Natural Science Foundation of China (51878607; 51838012); State Grid Zhejiang Electric Power Company Collective Enterprise Science and Technology Project (SX-JT-KJ-2018-01); Zhejiang Provincial Natural Science Foundation (LQ17 E080010)
  • 摘要: 整体成型的玻璃纤维增强复合材料(Glass fiber reinforced polymer,GFRP)节点是GFRP输电塔挂线模块的关键结构部件,需开展其承载力研究。首先对两个典型节点进行了试验研究,获得了包括荷载位移曲线、破坏模式的力学性能,然后建立基于渐进损伤演化的有限元模型,利用该模型开展了抗弯承载力关于垂直纤维方向抗拉强度Yt和剪切强度SL比值、主管直径D与厚度T比值、节点横梁宽度B及厚度w等参数的敏感性分析,基于Hashin失效准则和回归分析推演了该节点抗弯承载力算式并进行了可靠度分析。结果表明:试验和有限元计算结果具有较好的一致性,主要破坏形式为节点附近GFRP主管的基体拉伸破坏,当Yt/SL增大时破坏位置从节点向主管中部迁移,承载力随之下降。承载力算式结果与有限元计算结果比值的均值和变异系数分别为1.032和6.80%,承载力设计值具有99.9%的保证率。

     

  • 图  1  玻璃纤维增强复合材料(GFRP)挂线模块及T形节点

    Figure  1.  Glass fiber reinforced polymer (GFRP) hanging wire module and T-connection

    图  2  GFRP螺栓连接[18-21]

    Figure  2.  GFRP bolted connections[18-21]

    图  3  GFRP节点构造及几何尺寸参数

    d, D, T, L—Inner diameter, outer diameter, thickness and length of the main pipe; B, w, L1—Width, thickness and length of the beam respectively

    Figure  3.  Configuration and geometrical parameters of GFRP connection

    图  4  试验装置

    D1-D5—Displacement transducers; H—Thickness of strengthen part; l—Length of strengthened part of pipe's end; L2—Distance from loading point to top of main pipe; L3—Distance from D1 to top of main pipe

    Figure  4.  Experimental setup

    图  5  网格划分和约束

    RP3—Reference point; F—Load

    Figure  5.  Meshing and constraints

    图  6  GFRP输电塔T形节点试件的位移(Δ)-荷载(F)曲线

    FEA—Finite element analysis

    Figure  6.  Displacement (Δ)-load (F) curves of specimens of T-shaped GFRP transmission tower joint

    图  7  GFRP输电塔T形节点试件的弯矩(M)-转角(φ)和M-径向变形(δ)曲线

    Figure  7.  Bending moment (M)-rotational angle (φ) and M-radial deformation (δ) curves of T-shaped GFRP transmission tower joint specimens

    图  8  GFRP输电塔T形节点试件的破坏模式

    Figure  8.  Failure modes of specimens of T-shaped GFRP transmission tower joint

    图  9  GFRP输电塔T形节点试件的基体拉伸损伤

    Figure  9.  Matrix-tension damage of specimens of T-shaped GFRP transmission tower joint

    图  10  破坏荷载下GFRP输电塔T形节点Von Mises应力图

    Figure  10.  Von Mises's stress contour maps of specimens of T-shaped GFRP transmission tower joint under failure load

    图  11  极限荷载下GFRP输电塔T形节点试件J-190-4-400-75的失效区域

    Figure  11.  Failure region of specimen J-190-4-400-75 of T-shaped GFRP transmission tower joint under ultimate load

    图  12  极限荷载下GFRP输电塔T形节点试件J-190-4-400-75的应力分布

    Figure  12.  Stress contour maps of specimen J-190-4-400-75 of T-shaped GFRP transmission tower joint under ultimate load

    图  13  GFRP输电塔T形节点承载力随材料参数变化

    Fs—Load while matrix tensile failure occurs

    Figure  13.  Variation of capacity of T-shaped GFRP transmission tower joint with material parameters

    图  14  GFRP输电塔T形节点的无量纲弯矩$ {\tilde M_{\rm{s}}} $随基体拉伸强度Yt和纵向剪切强度SL之比变化

    Figure  14.  Variation of nondimensional bending moment $ {\tilde M_{\rm{s}}} $ of T-shaped GFRP transmission tower joint with the ratio of tension strength of matrix Yt to longitudinal strength SL

    图  15  GFRP输电塔T形节点的两种初始损伤模式

    Figure  15.  Two initial damage modes of T-shaped GFRP transmission tower joint

    图  16  GFRP输电塔T形节点的弯矩Ms随径厚比相关参数γ变化

    Figure  16.  Bending moment Ms of T-shaped GFRP transmission tower joint varies with the diameter to thickness ratio-related parameter γ

    图  17  GFRP输电塔T形节点的$ {\tilde M_{\text{s}}} $随w/D的变化

    Figure  17.  Variation of $ {\tilde M_{\text{s}}} $ of T-shaped GFRP transmission tower joint with w/D

    图  18  GFRP输电塔T形节点的$ {\tilde M_{\text{s}}} $ 随B/D的变化

    Figure  18.  Variation of $ {\tilde M_{\text{s}}} $ of T-shaped GFRP transmission tower joint with B/D

    图  19  理论计算和FEA得到的GFRP输电塔T形节点承载力

    Ms, FEA—Capacity via FEA; Ms, Th—Capacity via Equation (8)

    Figure  19.  Capacities of T-shaped GFRP transmission tower joint via theoretical and FEA approaches

    图  20  GFRP输电塔T形节点的设计值和FEA结果

    Figure  20.  Values of design capacity of T-shaped GFRP transmission tower joint and FEA results

    表  1  GFRP节点试件几何尺寸

    Table  1.   Geometrical parameters of GFRP connection specimens

    Specimen numberd/mmD/mmT/mmL/mmB/mmw/mmL1/mm
    J-190-4-400-75190198 42200400751000
    J-190-4-300-75190198 42200300751000
    J-172-14-400-75172198142200400751000
    下载: 导出CSV

    表  2  GFRP力学参数[33]

    Table  2.   Mechanical parameters of GFRP[33]

    ParametersValue
    E1c/MPa 49760
    E2c/MPa 12970
    ν21c 0.28
    G12/MPa 3220
    G13/MPa 3220
    G23/MPa 3220
    Xt/MPa 964.25
    Yt/MPa 53.12
    Xc/MPa 617.16
    Yc/MPa 103.83
    SL/MPa 34.71
    St/MPa 34.71
    Gc,ft/(N·mm−1) 45
    Gc,fc/(N·mm−1) 40
    Gc,mt/(N·mm−1) 0.165
    Gc,mc/(N·mm−1) 0.800
    Notes: E1c, E2c—Young's modulus in the direction parallel and perpendicular to fiber respectively, while under compression; ν21c—Poisson's ratio while under the compression in the direction parallel to fiber; G—Shear modulus with subscripts 1, 2 and 3 defining the directions parallel to fiber, perpendicular to fiber, and the direction perpendicular to the plane by directions 1 and 2; Xt, Xc—Tension and compression strength respectively in the direction parallel to fiber; Yt, Yc—Tension and compression strength in the direction perpendicular to fiber; St, SL—Shear strength in the lateral and longitudinal directions respectively; Gc—Fracture toughness with subscripts ft, fc, mt and mc defining fiber in tension, fiber in compression, matrix in tension and matrix in compression respectively.
    下载: 导出CSV

    表  3  GFRP输电塔T形节点参数敏感性分析采用的材料参数

    Table  3.   Material parameters used for parametric sensitivity analysis of T-shaped GFRP transmission tower joints

    Xt/MPaYt/MPaXc/MPaYc/MPaSt/MPaSL/MPa
    650, 750, 850, 964.25,
    1050, 1150, 1250
    30, 40, 50, 53.12,
    60, 70, 100
    300, 400, 500, 617.16,
    700, 800, 900
    60, 70, 80, 103.83,
    120, 140, 160
    20, 25, 30, 34.71,
    40, 45, 50
    10, 20, 26, 34.71,
    45, 53, 63
    下载: 导出CSV

    表  4  试件J-190-4-400-75与试件J-172-14-400-75的材料强度比取值

    Table  4.   Material strength ratios for specimen J-190-4-400-75 and specimen J-172-14-400-75

    YtSL
    30, 40, 53, 60, 7010, 20, 34, 40, 50
    下载: 导出CSV

    表  5  用于参数敏感性分析的GFRP输电塔T形节点的几何参数

    Table  5.   Geometry parameters for parametric sensitivity analysis of T-shaped GFRP transmission tower joint

    D/mmT/mmB/mmw/mm
    20014, 7, 4200, 250, 300, 350, 40040, 50, 60, 70, 76
    下载: 导出CSV

    表  6  可靠度分析相关参数

    Table  6.   Parameters related to reliability analysis

    $ {k_{{\text{d}},{\text{n}}}} $$ {k_{{\text{d}},\infty }} $ξ${V_\tau }$η
    3.04003.04000.99960.07120.7323
    Notes: $ {k_{{\text{d}},{\text{n}}}} $, $ {k_{{\text{d}},\infty }} $—Coefficients related to reliability; ξ—Correction factor; ${V_\tau } $—Coefficient of variation (COV) of error term $\tau $; η—Reduction factor.
    下载: 导出CSV
  • [1] BAKIS C E, BANK L C, BROWN V L, et al. Fiber-reinforced polymer composites for construction—State-of-the-art review[J]. Journal of Composites for Construction,2002,6(2):73-87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73)
    [2] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [3] 刘承斌, 应健, 陈勇, 等. 全玻璃纤维增强树脂筋混凝土电缆排管的抗弯试验[J]. 复合材料学报, 2018, 35(1):70-80.

    LIU Chengbin, YING Jian, CHEN Yong, et al. Experimental study on flexural performance of concrete cable duct reinforced with glass fiber reinforced polymer bars[J]. Acta Materiae Compositae Sinica,2018,35(1):70-80(in Chinese).
    [4] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [5] GODAT A, LÉGERON F, GAGNÉ V, et al. Use of FRP pultruded members for electricity transmission towers[J]. Composite Structures,2013,105:408-421.
    [6] 柳欢欢, 刘明慧, 于鑫. 复合材料输电杆塔设计方法讨论[J]. 玻璃钢/复合材料, 2013(6):48-52.

    LIU Huanhuan, LIU Minghui, YU Xin. The discussion of designing fiber reinforce plastic transmission tower[J]. Fiber Reinforced Plastics/Composites,2013(6):48-52(in Chinese).
    [7] 王力, 罗正帮, 杨雪锋. 复合材料输电杆塔设计及其发展的制约因素[J]. 工程与建设, 2014, 28(4):504-505, 562.

    WANG Li, LUO Zhengbang, YANG Xuefeng. Constraints on the design of composite power transmission towers and their development[J]. Engineering and Construction,2014,28(4):504-505, 562(in Chinese).
    [8] 崔旭, 冯炳, 陈勇, 等. 基于多尺度建模的GFRP输电塔数值仿真[J]. 空间结构, 2022, 28(4):87-96, 15.

    CUI Xu, FENG Bing, CHEN Yong, et al. Numerical simulation of GFRP transmission tower based on multi-scale modeling[J]. Spatial Structures,2022,28(4):87-96, 15(in Chinese).
    [9] ADISHCHEV V V, ZUBKOV A S, IVANOV A I, et al. Rational design of steel-GFRP towers for ultracompact overhead power lines[J]. Mechanics of Advanced Materials and Structures,2020,27(3):189-195. doi: 10.1080/15376494.2018.1472331
    [10] 赵胜利, 曾健, 苏耀国, 等. 复合材料输电杆塔结构受力分析[J]. 电网与清洁能源, 2018, 34(2):23-29. doi: 10.3969/j.issn.1674-3814.2018.02.004

    ZHAO Shengli, ZENG Jian, SU Yaoguo, et al. Force analysis of the composite material transmission tower structure[J]. Power System and Clean Energy,2018,34(2):23-29(in Chinese). doi: 10.3969/j.issn.1674-3814.2018.02.004
    [11] 马辉, 刘云贺, 郭宏超, 等. 双向荷载作用下 FRP 复合材料横担体系受力性能试验研究[J]. 西安理工大学学报, 2015, 31(2):164-170.

    MA Hui, LIU Yunhe, GUO Hongchao, et al. Experimental research on mechanical properties of cross arm system using FRP composite material under two-way loads[J]. Journal of Xi'an University of Technology,2015,31(2):164-170(in Chinese).
    [12] 任宗栋, 刘泉, 默增禄. 纤维增强复合材料输电杆塔节点设计及优化[J]. 电力建设, 2011, 32(4):87-91.

    REN Zongdong, LIU Quan, MO Zenglu. Joint design and optimization of FRB tower[J]. Electric Power Construction,2011,32(4):87-91(in Chinese).
    [13] 吴雄, 蔡炜, 李健, 等. 电力纤维增强复合材料应用进展[J]. 复合材料科学与工程, 2021(11):116-128.

    WU Xiong, CAI Wei, LI Jian, et al. Application progress of power fiber reinforced composite materials[J]. Composites Science and Engineering,2021(11):116-128(in Chinese).
    [14] ASYRAF M R M, ISHAK M R, SAPUAN S M, et al. Utilization of bracing arms as additional reinforcement in pultruded glass fiber-reinforced polymer composite cross-arms: Creep experimental and numerical analyses[J]. Polymers,2021,13(4):620. doi: 10.3390/polym13040620
    [15] SYAMSIR A, EAN L W, ASYRAF M R M, et al. Recent advances of GFRP composite cross arms in energy transmission tower: A short review on design improvements and mechanical properties[J]. Materials,2023,16(7):2778. doi: 10.3390/ma16072778
    [16] 何昌林, 沈帆, 柯锐, 等. 复合绝缘横担在110 kV输电线路改造工程中的应用研究[J]. 电瓷避雷器, 2023(2):157-163.

    HE Changlin, SHEN Fan, KE Rui, et al. Application of composite insulated crossarm in the reconstruction project of 110 kV transmission line[J]. Insulators and Surge Arresters,2023(2):157-163(in Chinese).
    [17] 李健, 吕健双, 柯嘉, 等. 500 kV同塔双回复合横担杆塔研究[J]. 电力勘测设计, 2023(2):57-61, 88.

    LI Jian, LYU Jianshuang, KE Jia, et al. Research on composite cross-arm tower of 500 kV double circuit transmission line[J]. Electric Power Survey & Design,2023(2):57-61, 88(in Chinese).
    [18] BANK L C, MOSALLAM A S, MCCOY G T. Design and performance of connections for pultruded frame structures[J]. Journal of Reinforced Plastics and Composites,1994,13(3):199-212. doi: 10.1177/073168449401300302
    [19] MOSALLAM A S, ABDELHAMID M K, CONWAY J H. Performance of pultruded FRP connections under static and dynamic loads[J]. Journal of Reinforced Plastics and Composites,1994,13(5):386-407. doi: 10.1177/073168449401300501
    [20] SMITH S J, PARSONS I D, HJELMSTAD K D. An experimental study of the behavior of connections for pultruded GFRP I-beams and rectangular tubes[J]. Composite Structures,1998,42(3):281-290. doi: 10.1016/S0263-8223(98)00082-8
    [21] SMITH S J, PARSONS I D, HJELMSTAD K D. Experimental comparisons of connections for GFRP pultruded frames[J]. Journal of Composites for Construction,1999,3(1):20-26. doi: 10.1061/(ASCE)1090-0268(1999)3:1(20)
    [22] MARTINS D, PROENÇA M, ALMEIDA GONILHA J, et al. Experimental and numerical analysis of GFRP frame structures. Part 1: Cyclic behaviour at the connection level[J]. Composite Structures,2019,220:304-317. doi: 10.1016/j.compstruct.2019.03.097
    [23] ASCIONE F, LAMBERTI M, RAZAQPUR A G, et al. Strength and stiffness of adhesively bonded GFRP beam-column moment resisting connections[J]. Composite Structures,2017,160:1248-1257. doi: 10.1016/j.compstruct.2016.11.021
    [24] RAZAQPUR A G, ASCIONE F, LAMBERTI M, et al. GFRP hollow column to built-up beam adhesive connection: Mechanical behaviour under quasi-static, cyclic and fatigue loading[J]. Composite Structures,2019,224:111069. doi: 10.1016/j.compstruct.2019.111069
    [25] ASCIONE F, LAMBERTI M, RAZAQPUR A G, et al. Pseudo-ductile failure of adhesively joined GFRP beam-column connections: An experimental and numerical investigation[J]. Composite Structures,2018,200:864-873. doi: 10.1016/j.compstruct.2018.05.104
    [26] ASCIONE F, GRANATA L. Mechanical models for predicting the strength and stiffness of a beam-to-column adhesively-bonded connection between pultruded profiles[J]. Structures,2022,43:493-507.
    [27] FENG P, WU Y, DING Y W, et al. Quasi-plastic flexural behavior of adhesive-bolt hybrid connection for large scale pultruded GFRP frame[J]. Engineering Structures,2021,238:112200. doi: 10.1016/j.engstruct.2021.112200
    [28] ASCIONE L, CARON J F, GODONOU P, et al. Prospect for new guidance in the design of FRP: EUR 27666 EN [R]. Ispra: European Commission's Joint Research Centre, 2016.
    [29] 周磊, 汪楚清, 孙清, 等. 玻璃纤维增强复合材料输电塔节点承载力试验研究及有限元分析[J]. 西安交通大学学报, 2013, 47(9):112-118.

    ZHOU Lei, WANG Chuqing, SUN Qing, et al. Experimental study and finite element analysis on ultimate bearing capacity of joint of glass fiber reinforced polymer for transmission tower[J]. Journal of Xi'an Jiaotong University,2013,47(9):112-118(in Chinese).
    [30] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials,2012,46(19-20):2313-2341.
    [31] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [32] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [33] 蔡勇, 冯炳, 陈勇, 等. 基于渐进损伤模型的缠绕玻璃纤维增强复材圆管轴压性能仿真[J]. 工业建筑, 2021, 51(7):194-202. doi: 10.13204/j.gyjzG20070105

    CAI Yong, FENG Bing, CHEN Yong, et al. Numerical simulations of axial compressive properties for gfrp pipes by the filament winding method based on the progressive damage model[J]. Industrial Construction,2021,51(7):194-202(in Chinese). doi: 10.13204/j.gyjzG20070105
    [34] European Committee for Standardization (CEN). Eurocode-basis of structural design: EN 1990: 2002 + A1: 2005 E[S]. Brussels: European Committee for Standardization, 2005.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  244
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-07-18
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回