留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双交联废弃瓦楞纸基气凝胶缓冲材料的制备与性能

任子铭 黎亮丽 蒋向向 岳士琪 李宏达 苟进胜

任子铭, 黎亮丽, 蒋向向, 等. 双交联废弃瓦楞纸基气凝胶缓冲材料的制备与性能[J]. 复合材料学报, 2024, 41(3): 1458-1469. doi: 10.13801/j.cnki.fhclxb.20230802.002
引用本文: 任子铭, 黎亮丽, 蒋向向, 等. 双交联废弃瓦楞纸基气凝胶缓冲材料的制备与性能[J]. 复合材料学报, 2024, 41(3): 1458-1469. doi: 10.13801/j.cnki.fhclxb.20230802.002
REN Ziming, LI Liangli, JIANG Xiangxiang, et al. Preparation and properties of double crosslinked waste corrugated paper-based aerogel buffer materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1458-1469. doi: 10.13801/j.cnki.fhclxb.20230802.002
Citation: REN Ziming, LI Liangli, JIANG Xiangxiang, et al. Preparation and properties of double crosslinked waste corrugated paper-based aerogel buffer materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1458-1469. doi: 10.13801/j.cnki.fhclxb.20230802.002

双交联废弃瓦楞纸基气凝胶缓冲材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230802.002
详细信息
    通讯作者:

    苟进胜,博士,副教授,硕士生导师,研究方向为生物质能源、新型包装材料、有限元与包装信息化等 E-mail: jinsheng@bjfu.edu.cn

  • 中图分类号: TB332

Preparation and properties of double crosslinked waste corrugated paper-based aerogel buffer materials

  • 摘要: 以废弃瓦楞纸(WCP)为原料,明胶(G)和植酸(PA)为改性剂,采用溶胶-凝胶法制备高吸能气凝胶。对明胶用量、植酸用量和反应温度对双交联改性废纸基气凝胶力学性能的影响进行了研究,并通过SEM、FTIR、XRD和TGA表征了明胶单一改性和明胶-植酸双交联改性前后气凝胶的结构与性能变化。结果表明:改性单体成功交联到废纸纤维上,双交联改性后的废纸基气凝胶呈现三维网状结构,相较于未改性和单一改性废纸基气凝胶具有较高的热稳定性、优异的隔热性能(0.045 W·m−1·K−1)和超强的吸能性(应变70%时,单位体积吸收能为253.45 kJ/m3),吸能性分别为珍珠棉(EPE)和乙烯-醋酸乙烯酯共聚物(EVA)的11.26和2.7倍。作为包装运输过程中的一种绿色缓冲材料,具有广阔的应用前景。

     

  • 图  1  双交联废纸基气凝胶制备过程示意图

    Figure  1.  Schematic diagram of preparation process of double cross-linked waste paper-based aerogel

    图  2  改性前后废纸基气凝胶微观形貌

    Figure  2.  Micromorphologies of waste paper based aerogel before and after modification

    图  3  明胶(G)-植酸(PA)/瓦楞纸(WCP)气凝胶密度、孔隙率和体积收缩率随废纸和明胶质量比的变化

    Figure  3.  Changes of density, porosity, and volume shrinkage in gelatin (G)-phytic acid (PA)/waste corrugated paper (WCP) aerogel with mass ratio of the waste paper and gelatin

    图  4  废纸和明胶不同质量比下:(a) G-PA/WCP气凝胶的压缩应力-应变曲线;(b) G-PA/WCP气凝胶的吸能曲线;(c) G-PA/WCP气凝胶在压缩应变为50%和70%处的单位体积吸能值

    Figure  4.  Different mass ratios of waste paper and gelatin: (a) Compression stress-strain curves of G-PA/WCP aerogel; (b) Energy absorption curves of G-PA/WCP aerogel; (c) Unit volume energy absorption values of G-PA/WCP aerogel at 50% and 70% compression strain

    图  5  废纸明胶不同质量比的宏观图

    Figure  5.  Macroscopic image of waste paper to gelatin at different mass ratios

    图  6  G-PA/WCP气凝胶密度、孔隙率和体积收缩率随植酸添加量的变化

    Figure  6.  Changes in density, porosity, and volume shrinkage rate of G-PA/WCP aerogel with different phytic acid addition amount

    图  7  不同植酸添加量下:(a) G-PA/WCP气凝胶的压缩应力-应变曲线;(b) G-PA/WCP气凝胶的吸能曲线;(c) G-PA/WCP气凝胶在压缩应变为50%和70%处的单位体积吸能值

    Figure  7.  Different phytic acid contents: (a) Compressive stress-strain curves of G-PA/WCP aerogel; (b) Energy absorption curves of G-PA/WCP aerogel; (c) Energy absorption per unit volume of G-PA/WCP aerogel at compression strain of 50% and 70%

    图  8  双交联废纸基气凝胶反应机制

    Figure  8.  Reaction mechanism of double cross-linked waste paper-based aerogel

    图  9  G-PA/WCP气凝胶密度、孔隙率和体积收缩率随反应温度的变化

    Figure  9.  Variation of G-PA/WCP aerogel density, porosity, and volume shrinkage with reaction temperatures

    图  10  不同反应温度下:(a) G-PA/WCP气凝胶的压缩应力-应变曲线;(b) G-PA/WCP气凝胶的吸能曲线;(c) G-PA/WCP气凝胶在压缩应变为50%和70%处的单位体积吸能值

    Figure  10.  At different reaction temperatures: (a) Compressive stress-strain curves of G-PA/WCP aerogel; (b) Energy absorption curves of G-PA/WCP aerogel; (c) Energy absorption per unit volume of G-PA/WCP aerogel at 50% and 70% compression strain

    图  11  双交联废纸基气凝胶的红外图谱

    Figure  11.  Infrared spectra of a double-crosslinked aerogel made from waste paper

    图  12  双交联废纸基气凝胶的XRD图谱

    Figure  12.  XRD patterns of a double-crosslinked waste paper aerogel

    图  13  不同湿度条件下:(a) G-PA/WCP气凝胶的压缩应力-应变曲线;(b) G-PA/WCP气凝胶的吸能曲线;(c) G-PA/WCP气凝胶的缓冲系数

    Figure  13.  Under different humidity conditions: (a) Compression stress-strain curves of G-PA/WCP aerogels; (b) Energy absorption curves of G-PA/WCP aerogels; (c) Buffering coefficient of G-PA/WCP aerogels

    EPE—Expanded polyethylene

    图  14  改性前后废纸基气凝胶的TGA (a)和DTG (b)曲线

    Figure  14.  TGA (a) and DTG (b) curves of waste paper based aerogel before and after modification

    图  15  改性前后废纸基气凝胶导热系数对比

    Figure  15.  Comparison of thermal conductivity of waste paper based aerogel before and after modification

    EVA—Ethylene vinyl acetate; EPS—Extracellular polymeric substances

    图  16  常用的缓冲包装材料和改性前后废纸基气凝胶的力学性能对比

    Figure  16.  Comparison of mechanical properties of commonly used buffer packaging materials and waste paper based aerogel before and after modification

    图  17  常用的缓冲包装材料和改性前后废纸基气凝胶缓冲系数对比

    Figure  17.  Comparison of buffering coefficients among commonly used buffer packaging materials and waste paper based aerogel before and after modification

    图  18  常用的缓冲包装材料和改性前后废纸基气凝胶单位体积吸收能和导热性对比

    Figure  18.  Comparison of absorbed energy and thermal conductivity per unit volume of commonly used buffer packaging materials and waste paper based aerogel before and after modification

  • [1] 张乾. 新型缓冲包装材料的发展走向[J]. 上海包装, 2013(12):49-51. doi: 10.19446/j.cnki.1005-9423.2013.12.017

    ZHANG Qian. The development trend of new cushioning packaging materials[J]. Shanghai Packaging,2013(12):49-51(in Chinese). doi: 10.19446/j.cnki.1005-9423.2013.12.017
    [2] 程琳, 王伟. 常见缓冲包装材料的应用现状[J]. 上海包装, 2014(6):53-54. doi: 10.19446/j.cnki.1005-9423.2014.06.025

    CHENG Lin, WANG Wei. The current application status of common cushioning packaging materials[J]. Shanghai Packaging,2014(6):53-54(in Chinese). doi: 10.19446/j.cnki.1005-9423.2014.06.025
    [3] 章婷, 赵春林, 乐弦, 等. 气凝胶研究进展[J]. 现代技术陶瓷, 2018, 39(1):1-39. doi: 10.16253/j.cnki.37-1226/tq.2017.12.001

    ZHANG Ting, ZHAO Chunlin, LE Xian, et al. Research progress of aerogel[J]. Modern Technology Ceramics,2018,39(1):1-39(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2017.12.001
    [4] 段一凡, 张光磊, 史新月, 等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1):36-43. doi: 10.13957/j.cnki.tcxb.2021.01.003

    DUAN Yifan, ZHANG Guanglei, SHI Xinyue, et al. Research progress in preparation and application of cellulose aerogel[J]. Journal of Ceramics,2021,42(1):36-43(in Chinese). doi: 10.13957/j.cnki.tcxb.2021.01.003
    [5] 张潇, 胡豪, 侯庆喜, 等. 纤维素基气凝胶在保温隔热领域中的研究进展[J]. 中国造纸, 2023, 42(2):86-93.

    ZHANG Xiao, HU Hao, HOU Qingxi, et al. Research progress of cellulose based aerogel in the field of thermal insulation[J]. China Paper,2023,42(2):86-93(in Chinese).
    [6] 狄莹莹, 任鹏刚, 李贞. 废弃物基纤维素气凝胶的研究进展[J]. 合成材料老化与应用, 2018, 47(5):114-121. doi: 10.16584/j.cnki.issn1671-5381.2018.05.025

    DI Yingying, REN Penggang, LI Zhen. Research progress of waste based cellulose aerogel[J]. Aging and Application of Synthetic Materials,2018,47(5):114-121(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2018.05.025
    [7] NGUYEN S T, FENG J, LE N T, et al. Cellulose aerogel from paper waste for crude oil spill cleaning[J]. Industrial & Engineering Chemistry Research,2013,52(51):18386-18391.
    [8] JIN C, HAN S, LI J, et al. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents[J]. Carbohydrate Polymers,2015,123:150-156. doi: 10.1016/j.carbpol.2015.01.056
    [9] 陈琪, 杨浩, 马新华, 等. 废纸浆气凝胶的制备及性能研究[J]. 化工新型材料, 2020, 48(6):261-265. doi: 10.19817/j.cnki.issn1006-3536.2020.06.057

    CHEN Qi, YANG Hao, MA Xinhua, et al. Study on preparation and properties of waste paper pulp aerogel[J]. New Chemical Materials,2020,48(6):261-265(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.06.057
    [10] CHEN Y W, LEE H V. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective[J]. International Journal of Biological Macromolecules,2018,107:78-92. doi: 10.1016/j.ijbiomac.2017.08.143
    [11] ZHU Y, ZHU J, YU Z, et al. Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam[J]. Chemical Engineering Journal,2022,450:138300. doi: 10.1016/j.cej.2022.138300
    [12] MALEKZADEH H, MD ZAID N S B, BELE E. Characterization and structural properties of bamboo fibre solid foams[J]. Cellulose,2021,28(2):703-714. doi: 10.1007/s10570-020-03565-0
    [13] LIU Y, LU P, XIAO H, et al. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: Entrapment and stabilization with NFC/MFC within capillary foams[J]. Cellulose,2017,24(1):241-251. doi: 10.1007/s10570-016-1103-y
    [14] ZHANG T, XU J, ZHANG Y, et al. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification[J]. Trends in Food Science & Technology,2020,106:113-131.
    [15] 王学川, 赵文莹, 张慧洁. 明胶的改性及其在胶黏剂中的应用研究进展[J]. 陕西科技大学学报, 2022, 40(4):100-108, 120. doi: 10.3969/j.issn.1000-5811.2022.04.015

    WANG Xuechuan, ZHAO Wenying, ZHANG Huijie. Research progress on the modification of gelatin and its application in adhesives[J]. Journal of Shaanxi University of Science and Technology,2022,40(4):100-108, 120(in Chinese). doi: 10.3969/j.issn.1000-5811.2022.04.015
    [16] 吴文娟, 钟建. 多酚改性明胶复合物的制备及乳液应用[D]. 上海: 上海海洋大学, 2022.

    WU Wenjuan, ZHONG Jian. Preparation of polyphenol modified gelatin complex and application of lotion[D]. Shanghai: Shanghai Ocean University, 2022(in Chinese).
    [17] 唐杰斌, 赵传山. 明胶及其改性物作为造纸增强剂的应用[J]. 黑龙江造纸, 2008(130):47-49, 52.

    TANG Jiebin, ZHAO Chuanshan. The application of gelatin and its modifications as reinforcement agents for paper making[J]. Heilongjiang Paper,2008(130):47-49, 52(in Chinese).
    [18] 郭浩麒, 罗文翰, 肖乃玉, 等. 半纤维素/壳聚糖/明胶绿色抗菌包装膜的制备与表征[J]. 仲恺农业工程学院学报, 2021, 34(2):17-22, 30. doi: 10.3969/j.issn.1674-5663.2021.02.004

    GUO Haoqi, LUO Wenhan, XIAO Naiyu, et al. Preparation and characterization of hemicellulose/chitosan/gelatin green antibacterial packaging film[J]. Journal of Zhongkai Agricultural Engineering College,2021,34(2):17-22, 30(in Chinese). doi: 10.3969/j.issn.1674-5663.2021.02.004
    [19] 李建, 吴伟兵. 纳米纤维素基凝胶材料的结构功能设计及应用[D]. 南京: 南京林业大学, 2018.

    LI Jian, WU Weibing. Structure function design and application of nano cellulose based gel materials[D]. Nanjing: Nanjing Forestry University, 2018(in Chinese).
    [20] 金浩, 刘杏, 林咏梅. 植酸改性的明胶复合膜制备及其结构与性能分析[J]. 化工进展, 2021, 40(7):3847-3853.

    JIN Hao, LIU Xing, LIN Yongmei. Preparation and structure and performance analysis of phytic acid modified gelatin composite film[J]. Chemical Progress,2021,40(7):3847-3853(in Chinese).
    [21] LI J, LI Y, SONG Y, et al. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity[J]. Ultrasonics Sonochemistry,2017,39:853-862. doi: 10.1016/j.ultsonch.2017.06.017
    [22] CAO M, LIU B W, ZHANG L, et al. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications[J]. Composites Part B: Engineering,2021,225:109309. doi: 10.1016/j.compositesb.2021.109309
    [23] WANG H, CAO M, ZHAO H B, et al. Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment[J]. Chemical Engineering Journal,2020,399:125698. doi: 10.1016/j.cej.2020.125698
    [24] 刘燕飞. 明胶-二氧化硅复合气凝胶的制备、改性及其性能研究[D]. 天津: 天津大学, 2016.

    LIU Yanfei. Preparation, modification and properties of gelatin silica composite aerogel[D]. Tianjin: Tianjin University, 2016(in Chinese).
    [25] 中华人民共和国国家质量监督检验检疫总局. 包装 运输包装件基本试验 第2部分: 温湿度调节处理: GB/T 4857.2—2005[S]. 北京: 中国标准出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Packaging, transportation, basic testing of packaging components—Part 2: Temperature and humidity adjustment treatment: GB/T 4857.2—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [26] 闫慧敏, 杨光, 杨波, 等. 明胶/海藻酸钠/沙蒿胶复合水凝胶的制备及表征[J]. 工业微生物, 2022, 52(1):24-33.

    YAN Huimin, YANG Guang, YANG Bo, et al. Preparation and characterization of gelatin/sodium alginate/artemisia sphaerocephala gum composite hydrogel[J]. Industrial Microbiology,2022,52(1):24-33(in Chinese).
    [27] 付丽红, 张铭让, 齐永钦, 等. 胶原蛋白和植物纤维结合机理的研究[J]. 中国造纸学报, 2002(1):71-74. doi: 10.3321/j.issn:1000-6842.2002.01.016

    FU Lihong, ZHANG Mingrang, QI Yongqin, et al. A study on the binding mechanism between collagen and plant fibers[J]. Chinese Journal of Paper Industry,2002(1):71-74(in Chinese). doi: 10.3321/j.issn:1000-6842.2002.01.016
  • 加载中
图(18)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  175
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-03
  • 录用日期:  2023-07-23
  • 网络出版日期:  2023-08-02
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回