留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载药纺织品制备方法的研究进展

李长静 赵立环 王玉稳 李艳艳 杨玉洁 闫子妍 陈雨龙

李长静, 赵立环, 王玉稳, 等. 载药纺织品制备方法的研究进展[J]. 复合材料学报, 2024, 41(1): 60-77. doi: 10.13801/j.cnki.fhclxb.20230802.001
引用本文: 李长静, 赵立环, 王玉稳, 等. 载药纺织品制备方法的研究进展[J]. 复合材料学报, 2024, 41(1): 60-77. doi: 10.13801/j.cnki.fhclxb.20230802.001
LI Changjing, ZHAO Lihuan, WANG Yuwen, et al. Research progress of drug-loaded textiles in the preparation methods[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 60-77. doi: 10.13801/j.cnki.fhclxb.20230802.001
Citation: LI Changjing, ZHAO Lihuan, WANG Yuwen, et al. Research progress of drug-loaded textiles in the preparation methods[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 60-77. doi: 10.13801/j.cnki.fhclxb.20230802.001

载药纺织品制备方法的研究进展

doi: 10.13801/j.cnki.fhclxb.20230802.001
基金项目: 天津市科技计划项目(22YDTPJC00820);中国纺织工业联合会科技指导性计划项目(2021065)
详细信息
    通讯作者:

    赵立环,博士,副教授,硕士生导师,研究方向为生物医用纺织品的制备、理论及应用 E-mail: zhaolihuan@tiangong.edu.cn

  • 中图分类号: TS195.5;TB332

Research progress of drug-loaded textiles in the preparation methods

Funds: Science and Technology Plan Project of Tianjin (22YDTPJC00820); Science and Technology Guidance Project of China National Textile and Apparel Association (2021065)
  • 摘要: 纺织品具有比表面积大、柔韧性好、适用性广、对药物具有良好的负载及缓释控释能力等优点,被广泛用于药物负载。载药纺织品的制备方法主要包括纺丝法、后整理法及复合法,以其制备方法为切入点对载药纺织品进行分类,然后阐述了各类载药纺织品制备方法、释药特征、适用性及其研究现状,并归纳了各类载药纺织品的制备方法的特征和优缺点,最后提出了载药纺织品的未来研究方向,为进一步研究载药纺织品及其制备方法提供参考。

     

  • 图  1  羧甲基白芨多糖-聚乙烯醇(CBSP-PVA)湿纺纤维负载聚多巴胺@二甲双胍(PDA@Metformin)的制备流程 [42]

    Figure  1.  Preparation process of carboxymethylated bletillastriata polysaccharide-polyvinyl alcohol (CBSP-PVA) wet-spun fibers loaded with polydopamine@metformin (PDA@Metformin)[42]

    图  2  PVA/聚丙烯酸(PAA)-表没食子儿茶素没食子酸酯(EGCG) pH响应纤维的制备流程与释放效果图[46]

    Figure  2.  pH-responsive fibers of PVA/polyacrylic acid (PAA)-epigallocatechin gallate (EGCG) preparation process and release effect diagram[46]

    图  3  用于治疗多药耐药癌细胞的阿霉素(DOX)@层状双氢氧化物(LDH)/α-生育酚琥珀酸酯(α-TOS)/聚乳酸-羟基乙酸共聚物(PLGA)短纳米纤维的制备(a)和药物释放(b)示意图[47]

    Figure  3.  Schematic illustration of the preparation (a) and drug release (b) of doxorubicin (DOX)@layered double hydroxide (LDH)/α-tocopherylsuccinate (α-TOS)/poly(lactic-co-glycolic acid) (PLGA) short nanofibers for the treatment of multidrug resistance cancer cells[47]

    图  4  多功能敷料的制作(a)及伤口愈合过程示意图((b), (c))[50]

    Figure  4.  Schematic illustration of the fabrication (a) of the multi-functional dressing and the wound healing process ((b), (c))[50]

    NPs—Nanoparticles; BMSCs—Bone marrow mesenchymal stem cells; PCL—Polycaprolactone

    图  5  茶碱/聚乳酸(PLA)纳米纤维的制备与释放流程图[52]

    Figure  5.  Flow chart of preparation and release of the ophylline/polylactic acid (PLA) nanofibers[52]

    PBS—Phosphate buffered solution

    图  6  天然多糖微胶囊与棉织物结合原理图[55]

    Figure  6.  Principle diagram of natural polysaccharide microcapsules combined with cotton fabric[55]

    图  7  没食子酸功能化聚赖氨酸(GA-PL)接枝的棉纤维的制备示意图[59]

    Figure  7.  Schematic illustration of the preparation of cotton fiber grafted with gallic acid functionalized polylysine (GA-PL)[59]

    图  8  共混纤维素-壳聚糖气凝胶微纤维(CHCLAFs)的特点[61]

    Figure  8.  Characteristics of co-mingled chitosan-cellulose aerogel microfibers (CHCLAFs) [61]

    图  9  聚乙二醇(PEG)-壳聚糖(CS)功能性涂层的制备流程[63]

    Figure  9.  Preparation process of the polyethylene glycol (PEG)-chitosan (CS) coating[63]

    STS—Sodium tanshinone IIA sulfonate

    图  10  聚己内酯(PCL)纳米纤维上的自组装肽(SAPs)逐层涂层示意图[65]

    Figure  10.  Schematic illustration of the layer-by-layer coating of self-assembling peptide (SAPs) on polycaprolactone (PCL) nanofibers[65]

    pDNA/PEIpro—Plasmid DNA/polyethylenimine pro

    图  11  DOX-PLGA-聚乙烯亚胺(PEI)-二乙烯三胺-五乙酸二酐(DTPA)-Gd/透明质酸(HA) (PGH)微球的制备[68]

    Figure  11.  Preparation of DOX-PLGA-polyethylenimine (PEI)-diethylenetriamine-pentaacetic dianhy-dride (DTPA)-Gd/hyaluronic acid (HA) (PGH) microspheres[68]

    SFs—Short fibers; HV—High voltage

    图  12  热致变色水凝胶功能化纺织品的制备工艺及释药原理(右上角是链式光子晶体结构的SEM图像)[69]

    Figure  12.  Preparation process of thermochromic hydrogel-functionalized textiles and the principle of drug release (Upper right corner is the SEM image of the chain photonic crystal structure)[69]

    P(NIPAM-AAc)—Poly(N-isopropylacrylamide-co-acrylic acid); β-CD-Mox—β-cyclodextrin-moxifloxacin

    表  1  载药纺织品的制备方法及其优缺点

    Table  1.   Preparation methods for drug-carrying textiles and their advantages and disadvantages

    Preparation of drug-loaded textilesPreparation characteristicsAdvantagesDisadvantagesRef.
    Spinning methodWet spinningPreparation of a spinning solution spiked with a drug, which forms a fine stream through the spinneret and forms primary fibres in the coagulation bathFaster spinning speed, easy to achieve industrial productionLess variety of polymer materials, limited choice; Large amount of solvent use and easy to have residue[39]
    Electrostatic spinningCo-blended electrospinningElectrostatic spinning of drug and polymer blendsSimple spinning device, low cost, controllable processPresence of pre-emergent drug release problems[43]
    Coaxial electrospinningSimultaneous spinning of two spinning liquids into core-shell structured fibres through separate syringesTwo separate drug solvents can be prepared to achieve controlled and sustained release of drugsSpinning is complex and
    difficult, spinning process is not easy to control
    [1, 71]
    Emulsion electrospinningHydrophilic and hydrophobic polymers are electrospun by adding an emulsifier to obtain a spinning solutionAdjustment of emulsion parameters can control the release curve, good slow release effect, simple preparationRequires the addition of surfactants, which may be toxic to biological systems[71-73]
    Layer-by-layer electrospinningContinuous electrostatic spinning of multilayer nanofibre filmsIt can load with a variety of drugs and controll release based on layer thicknessSlow production speed and high cost[44]
    Finishing methodImpregnationImpregnation methodSoak the fabric in the finishing agent, dehydrate and bakeSimple operation, low cost, less impact on fabric moisture permeability and breathabilityPoor washing fastness of the finishing fabric and high consumption of finishing solution[54, 74]
    Dipping and rolling methodSoak-roll-dry finishing of the drug onto the fabricFastness of the fabric to washing is improved, and the amount of finishing agent is relatively savedMechanical strength and moisture permeability of the fabric has decreased[57, 75]
    Chemical grafting methodDrug loading onto the fabric by chemical bondingEasy to count the drug load, drug and fabric bonding stability and fastnessHigh requirements for reactive functional groups and changes in chemical structure easily lead to changes in functional conformation[74, 76]
    Supercritical CO2 fluid delivery technologyDissolving or dispersing drug loading into polymeric matrices using supercritical fluidsIt can maintain the stability of the drugChanges in fiber properties can occur[77]
    CoatingCoating methodApply the drug solution evenly to the surface of the fabricSimple preparation method, high drug loading and releaseFabric has a poor feel and taking properties[78]
    Layer-by-layer self-assembly technologyDeposition of alternating layers of drug-carrying film by intermolecular interactionsMultiple and bulk drug loading and controlled drug release are possibleTechnique is time consuming and the repeated deposition of layers can lead to cross contamination[79]
    下载: 导出CSV
  • [1] 李燕谊. 环糊精-金属有机框架材料及其复合纤维的制备及应用研究[D]. 广州: 暨南大学, 2021.

    LI Yanyi. Preparation and application of cyclodextrin-based metal-organic frame work and its composite fibers[D]. Guangzhou: Jinan University, 2021(in Chinese).
    [2] KAMATH S M, SRIDHAR K, JAISON D, et al. Fabrication of tri-layered electrospun polycaprolactone mats with improved sustained drug release profile[J]. Scientific Reports,2020,10(1):18179. doi: 10.1038/s41598-020-74885-1
    [3] ALI I H, KHALIL I A, El-SHERBINY I M. Phenytoin/sildenafil loaded poly (lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration[J]. International Journal of Biological Macromolecules,2019,136:154-164. doi: 10.1016/j.ijbiomac.2019.06.048
    [4] LEE C H, CHANG S H, CHEN W J, et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes[J]. Journal of Colloid and Interface Science,2015,439:88-97. doi: 10.1016/j.jcis.2014.10.028
    [5] LI T T, SUN L, ZHONG Y, et al. Silk fibroin/polycaprolactone-polyvinyl alcohol directional moisture transport composite film loaded with antibacterial drug-loading microspheres for wound dressing materials[J]. International Journal of Biological Macromolecules,2022,207:580-591. doi: 10.1016/j.ijbiomac.2022.02.105
    [6] NAZ M, JABEEN S, GULL N, et al. Novel silane crosslinked chitosan based electrospun nanofiber for controlled release of benzocaine[J]. Frontiers in Materials,2022,9:826251. doi: 10.3389/fmats.2022.826251
    [7] GUO J, WANG T, YAN Z, et al. Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology[J]. International Journal of Pharmaceutics,2022,629:122410. doi: 10.1016/j.ijpharm.2022.122410
    [8] LIN M, LIU Y, GAO J, et al. Synergistic effect of co-delivering ciprofloxacin and tetracycline hydrochloride for promoted wound healing by utilizing coaxial PCL/gelatin nanofiber membrane[J]. International Journal of Molecular Sciences,2022,23(3):1895. doi: 10.3390/ijms23031895
    [9] NADRI S, RAHMANI A, HOSSEINI S H, et al. Prevention of peritoneal adhesions formation by core-shell electrospun ibuprofen-loaded PEG/silk fibrous membrane[J]. Artificial Cells, Nanomedicine, and Biotechnology,2022,50(1):40-48. doi: 10.1080/21691401.2021.1883043
    [10] TANG Y, CHEN L, ZHAO K, et al. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration[J]. Composites Science and Technology,2016,125:100-107. doi: 10.1016/j.compscitech.2016.02.005
    [11] SUN X, LI K, CHEN S, et al. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers[J]. International Journal of Pharmaceutics,2016,512(1):204-212. doi: 10.1016/j.ijpharm.2016.08.053
    [12] CHEN S X, WANG H J, SU Y J, et al. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing[J]. Acta Biomaterialia,2020,108:153-167. doi: 10.1016/j.actbio.2020.03.035
    [13] 杨少华, 何苗苗, 常语宸, 等. 负载BMP-2和BSA的丝素蛋白/聚左旋乳酸-己内酯三维纤维屏障膜的制备及性能[J]. 复合材料学报, 2017, 34(12):2810-2818. doi: 10.13801/j.cnki.fhclxb.20170314.001

    YANG Shaohua, HE Miaomiao, CHANG Yuchen, et al. Preparation and characterization of 3D fibrous barrier mat of silk fibroin/poly(L-lactide-co caprolactone) loaded with BMP-2 and BSA[J]. Acta Materiae Compositae Sinica,2017,34(12):2810-2818(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170314.001
    [14] MANDIEH Z, MITRA S, HOLIAN A. Core-shell electrospun fibers with an improved open pore structure for size-controlled delivery of nanoparticles[J]. ACS Applied Polymer Materials,2020,2(9):4004-4015. doi: 10.1021/acsapm.0c00643
    [15] 张梦星. 五倍子/海藻酸钠/壳聚糖抗菌微胶囊的制备及其抗菌性[D]. 上海: 东华大学, 2017.

    ZHANG Mengxing. Preparation and antibacterial properties of natural gallnut/sodium alginate/chitosan microcapsules[D]. Shanghai: Donghua University, 2017(in Chinese).
    [16] ZHAO W, LIU W, XU R, et al. Fabrication and characterization of dual drug-loaded poly(lactic-co-glycolic acid) fiber-microsphere composite scaffolds[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2019,68(7):375-383. doi: 10.1080/00914037.2018.1446139
    [17] LI C, LIU Z, LIU S, et al. Properties anddrug release study of cellulose acetate nanofibers containing ear-like Ag-NPs and dimethyloxallyl glycine/beta-cyclodextrin[J]. Applied Surface Science,2022,590:153132. doi: 10.1016/j.apsusc.2022.153132
    [18] WENG C J, LIAO C T, HSU M Y, et al. Simvastatin-loaded nanofibrous membrane efficiency on the repair of achilles tendons[J]. International Journal of Nanomedicine,2022,17:1171-1184. doi: 10.2147/IJN.S353066
    [19] HIMMLER M, SCHUBERT D W, DAHNE L, et al. Electrospun PCL scaffolds as drug carrier for corneal wound dressing using layer-by-layer coating of hyaluronic acid and heparin[J]. International Journal of Molecular Sciences,2022,23(5):2765. doi: 10.3390/ijms23052765
    [20] PENG Y, MA Y, BAO Y, et al. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing[J]. International Journal of Biological Macromolecules,2021,183:68-78. doi: 10.1016/j.ijbiomac.2021.04.021
    [21] 毛迎. 腹壁疝修复防粘连纺织基复合型补片的制备与性能研究[D]. 上海: 东华大学, 2022.

    MAO Ying. Fabrication and performance study of anti-adhesion textile composite mesh for abdominal wall hernia repair[D]. Shanghai: Donghua University, 2022(in Chinese).
    [22] 朱小倩. 聚丙烯/胶原防粘连疝修补片的设计与性能研究[D]. 上海: 东华大学, 2018.

    ZHU Xiaoqian. Study on manufacture and properties of PP/collagen anti-adhesion hernia mesh[D]. Shanghai: Donghua University, 2018(in Chinese).
    [23] HU W, HUANG Z M, LIU X Y. Development of braided drug-loaded nanofiber sutures[J]. Nanotechnology,2010,21(31):315104. doi: 10.1088/0957-4484/21/31/315104
    [24] LIU P, YANG L, SHI A, et al. Regional anticoagulation magnetic artificial blood vessels constructed by heparin-PLCL core-shell nanofibers for rapid deployment of veno-venous bypass[J]. Biomaterials Science,2022,10(13):3559-3568. doi: 10.1039/D2BM00205A
    [25] 王宪朋, 刘阳, 王传栋, 等. 静电纺丝法制备小口径胶原-聚乳酸人工血管[J]. 复合材料学报, 2017, 34(11):2550-2555. doi: 10.13801/j.cnki.fhclxb.20170220.005

    WANG Xianpeng, LIU Yang, WANG Chuandong, et al. Preparation of small-diameter collagen-polylactic acid artificial blood vessel by electrospinning[J]. Acta Materiae Compositae Sinica,2017,34(11):2550-2555(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170220.005
    [26] 徐俊. 驱蚊纳米胶囊的制备及其在纺织品上应用性能的研究[D]. 上海: 上海工程技术大学, 2016.

    XU Jun. Preparation of anti-mosquito nanocapsules and its application in textiles[D]. Shanghai: Shanghai University of Engineering Science, 2016(in Chinese).
    [27] ZHANG X, TIAN C, CHEN Z, et al. Hydrogel-based multifunctional dressing combining magnetothermally responsive drug delivery and stem cell therapy for enhanced wound healing[J]. Advanced Therapeutics,2020,3(9):2000001. doi: 10.1002/adtp.202000001
    [28] CHEN J, XU F, WEI Y, et al. Dual-carrier drug-loaded composite membrane dressings of mesoporous silica and layered double hydroxides[J]. Journal of Drug Delivery Science and Technology,2022,75:103634. doi: 10.1016/j.jddst.2022.103634
    [29] WANG Y, JIA J, QIAN B, et al. New type of electrospinning drug-loaded nanofibermembrane in the treatment of gallstone disease[J]. Applied Nanoscience,2023,13:3523-3531. doi: 10.1007/s13204-022-02685-2
    [30] DOLCI L S, PERONE R C, DI GESÙ R, et al. Design and in vitro study of a dual drug-loaded delivery system produced by electrospinning for the treatment of acute injuries of the central nervous system[J]. Pharmaceutics,2021,13(6):848. doi: 10.3390/pharmaceutics13060848
    [31] TAWFIK E A, CRAIG D Q M, BARKER S A. Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion[J]. International Journal of Pharmaceutics,2020,581:119296. doi: 10.1016/j.ijpharm.2020.119296
    [32] TAWFIK E A, ALSHAMSAN A, KALAMM A, et al. In vitro and in vivo biologicalassessment of dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion[J]. International Journal of Pharmaceutics,2021,604:120732. doi: 10.1016/j.ijpharm.2021.120732
    [33] QI Y, JING S, HE S, et al. The associated killing of hepatoma cells using multilayerdrug-loaded mats combined with fast neutron therapy[J]. Nano Research,2020,14(3):778-787.
    [34] XIAO Y, FAN Y, TU W, et al. Multifunctional PLGA microfibrous rings enable MR imaging-guided tumor chemotherapy and metastasis inhibition through prevention of circulating tumor cell shedding[J]. Nano Today,2021,38:101123. doi: 10.1016/j.nantod.2021.101123
    [35] ZHOU Y, WANG M, YAN C, et al. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers[J]. Biomolecules,2022,12(9):1254. doi: 10.3390/biom12091254
    [36] BARRIENTOS I J H, PALADINO E, BROZIO S, et al. Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair[J]. International Journal of Pharmaceutics,2017,517(1-2):329-337. doi: 10.1016/j.ijpharm.2016.12.022
    [37] WENG C J, LEE D, HO J, et al. Doxycycline-embedded nanofibrous membranes help promote healing of tendon rupture[J]. International Journal of Nanomedicine,2020,15:125-136. doi: 10.2147/IJN.S217697
    [38] ROSTAMITABAR M, ABDELGAWAD A M, JOCKENHOEVEL S, et al. Drug-eluting medical textiles: From fiber production and textile fabrication to drug loading and delivery[J]. Macromolecular Bioscience,2021,21(7):2100021. doi: 10.1002/mabi.202100021
    [39] 吴焕岭, 申夏夏, 朱利民. 湿法纺丝技术在新型载药系统中的研究进展与前景分析[J]. 材料导报, 2015, 29(7):112-117.

    WU Huanling, SHEN Xiaxia, ZHU Limin. Research status quo and development tendency of wet spinning technology with application to new drug carrier system[J]. Materials Review,2015,29(7):112-117(in Chinese).
    [40] NOURI M, ABBASI M, SERAJ M, et al. Fabrication and characterization of drug-loaded wet spun polycaprolactone fibers[J]. The Journal of the Textile Institute,2021,112(3):462-469. doi: 10.1080/00405000.2020.1764773
    [41] WU H L, BREMNER D H, LI H Y, et al. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization[J]. Materials Science and Engineering: C,2016,62:702-709.
    [42] MA Z H, LI Y H, LV J Y, et al. Construction and assessment of carboxymethyl Bletilla striata polysaccharide/polyvinyl alcohol wet-spun fibers load with polydopamine@metformin microcapsules[J]. Journal of Drug Delivery Science and Technology,2022,71:103279. doi: 10.1016/j.jddst.2022.103279
    [43] YU K, ZHU T, WU Y, et al. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold[J]. Colloids and Surfaces B: Biointerfaces,2017,151:314-323. doi: 10.1016/j.colsurfb.2016.12.034
    [44] 陈丽. 载药纳米纤维膜的制备及释药行为研究[D]. 上海: 华东师范大学, 2018.

    CHEN Li. Studies on synthesis and drug release of nanofibrous membranes loaded drug[D]. Shanghai: East China Normal University, 2018(in Chinese).
    [45] WENG C J, WU Y C, HSU M Y, et al. Electrospun, resorbable, drug-eluting, nanofibrous membranes promote healing of allograft tendons[J]. Membranes,2022,12(5):529. doi: 10.3390/membranes12050529
    [46] TAN S, HAN J, YUAN X, et al. Epigallocatechin gallate-loaded pH-responsive dressing with effective antioxidant, antibacterial and anti-biofilm properties for wound healing[J]. Materials & Design,2023,227:111701.
    [47] MA Y P, LI D, XIAO Y C, et al. LDH-doped electrospun short fibers enable dual drug loading and multistage release for chemotherapy of drug-resistant cancer cells[J]. New Journal of Chemistry,2021,45(30):13421-13428. doi: 10.1039/D1NJ02159A
    [48] CHEN X, LI H, LU W, et al. Antibacterial porous coaxial drug-carrying nanofibers for sustained drug-releasing applications[J]. Nanomaterials,2021,11(5):1316. doi: 10.3390/nano11051316
    [49] MAGHSOUDI S, TAGHAVI SHAHRAKI B, RABIEE N, et al. Burgeoning polymer nano blends for improved controlled drug release: A review[J]. International Journal of Nanomedicine,2020,15:4363-4392. doi: 10.2147/IJN.S252237
    [50] GAO C, ZHANG L, WANG J, et al. Coaxial structured drug loaded dressing combined with induced stem cell differentiation for enhanced wound healing[J]. Biomaterials Advances,2022,134:112542. doi: 10.1016/j.msec.2021.112542
    [51] 郭芙蓉. 皮克林乳液法制备聚柠檬酸酯基微球及微纳米纤维膜的研究[D]. 上海: 东华大学, 2022.

    GUO Furong. Study on preparation of polycitrate-based microspheres and micronanofiber membranes by pickering emulsion[D]. Shanghai: Donghua University, 2022(in Chinese).
    [52] LIU M, HAO X, WANG Y, et al. A biodegradable core-sheath nanofibrous 3D hierarchy prepared by emulsion electrospinning for sustained drug release[J]. Journal of Materials Science,2020,55(35):16730-16743. doi: 10.1007/s10853-020-05205-1
    [53] HUANG Y, WANG L, LIU Y, et al. Drug-loaded PLCL/PEO-SA bilayer nanofibrous membrane for controlled release[J]. Journal of Biomaterials Science, Polymer Edition,2021,32(18):2331-2348. doi: 10.1080/09205063.2021.1970881
    [54] 吴红霞. 大青叶抗菌物质的提取及其在纺织品上的应用研究[D]. 长春: 长春工业大学, 2015.

    WU Hongxia. Research on the extraction of the antimicrobial substance in Folium isatidis and the application of the substance in textile[D]. Changchun: Changchun University of Technology, 2015(in Chinese).
    [55] 赵玉. 氧化石墨烯/多糖微胶囊及其缓控释抗菌纺织品应用研究[D]. 天津: 天津工业大学, 2021.

    ZHAO Yu. Research on graphene oxide/polysaccharide microcapsules and their slow and controlled release antibacterial textile applications[D]. Tianjin: Tiangong University, 2021(in Chinese).
    [56] 张思雨. 基于氧化石墨烯/壳聚糖复合物的压力衣面料抗菌整理[D]. 天津: 天津工业大学, 2021.

    ZHANG Siyu. Antibacterial finishing of compression garment fabrics based on graphene oxide/chitosan complexes[D]. Tianjin: Tiangong University, 2021(in Chinese).
    [57] 张卓成. 抗菌整理剂的设计合成及其在纺织品中的应用[D]. 深圳: 深圳大学, 2020.

    ZHANG Zhuocheng. Design and synthesis of antibacterial finishing agent and its application in textiles[D]. Shenzhen: Shenzhen University, 2020(in Chinese).
    [58] WANG D, ZHAO H, XU C, et al. Enhancing neuroprotective effect of aminosalicylic acid-grafted chitosan electrospun fibers for spinal cord injury[J]. Materials Today Bio,2023,18:100529. doi: 10.1016/j.mtbio.2022.100529
    [59] ZHANG W, ZENG Q M, TANG R C. Gallic acid functionalized polylysine for endowing cotton fiber with antibacterial, antioxidant, and drug delivery properties[J]. International Journal of Biological Macromolecules,2022,216:65-74. doi: 10.1016/j.ijbiomac.2022.06.186
    [60] 朱维维. 超临界CO2流体中药物在纤维上的负载及其缓释行为研究[D]. 上海: 东华大学, 2020.

    ZHU Weiwei. Investigation of the loading abilities of drugs on substrate fibers in supercritical CO2 fluid and their release behaviors in solvent[D]. Shanghai: Donghua University, 2020(in Chinese).
    [61] ROSTAMITABAR M, AMAN GHAHRI A, SEIDE G, et al. Drug loaded cellulose-chitosan aerogel microfibers for wound dressing applications[J]. Cellulose,2022,29(11):6261-6281. doi: 10.1007/s10570-022-04630-6
    [62] 李婉迪. 纳米TiO2/SiO2/氧化石墨烯复合涂层涤棉织物的制备及性能研究[D]. 上海: 东华大学, 2016.

    LI Wandi. Preparation and performance of nano TiO2/SiO2/graphene oxide coating polyester-cotton fabrics[D]. Shanghai: Donghua University, 2016(in Chinese).
    [63] 孙小琳. 负载丹参酮IIA磺酸钠的PEG-CS血管支架涂层的构建及性能研究[D]. 上海: 东华大学, 2022.

    SUN Xiaolin. Construction and performance evaluation of PEG-CS coating loaded with sodium tanshinone IIA sulfonate for vascular graft[D]. Shanghai: Donghua University, 2022(in Chinese).
    [64] 刘思思, 陈杰, 林祥德, 等. 壳聚糖/丝素纳米纤维载药多层膜的构建和抗菌应用[J]. 高分子学报, 2022, 53(12):1459-1465. doi: 10.11777/j.issn1000-3304.2022.22117

    LIU Sisi, CHEN Jie, LIN Xiangde, et al. Construction and antibacterial application of drug-loading chitosan/silk nanofiber multilayer film[J]. Acta Polymerica Sinica,2022,53(12):1459-1465(in Chinese). doi: 10.11777/j.issn1000-3304.2022.22117
    [65] ZHANG K, CHOOI W H, LIU S, et al. Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering[J]. Biomaterials,2020,256:120225. doi: 10.1016/j.biomaterials.2020.120225
    [66] 张威. 壳聚糖基载药Janus纳米纤维膜的制备及性能研究[D]. 哈尔滨: 东北林业大学, 2022.

    ZHANG Wei. Preparation and properties of CS based drug-loaded Janus nanofibrous membrane[D]. Harbin: Northeast Forestry University, 2022(in Chinese).
    [67] SONG B, XU S, SHI S, et al. Superhydrophobic coating to delay drug release from drug-loaded electrospun fibrous materials[J]. Applied Surface Science,2015,359:245-251. doi: 10.1016/j.apsusc.2015.10.085
    [68] CAO X, DAI L, SUN S, et al. Preparation and performance of porous hydroxyapatite/poly (lactic-co-glycolic acid) drug-loaded microsphere scaffolds for gentamicin sulfate delivery[J]. Journal of Materials Science,2021,56(27):15278-15298. doi: 10.1007/s10853-021-06183-8
    [69] GONG X B, HOU C Y, ZHANG Q H, et al. Thermochromic hydrogel-functionalized textiles for synchronous visual monitoring of on-demand in vitro drug release[J]. ACS Applied Materials & Interfaces,2020,12(46):51225-51235. doi: 10.1021/acsami.0c14665
    [70] 文颖. 壳聚糖纳米纤维基水凝胶的制备及其在生物医用材料中应用研究[D]. 广州: 华南理工大学, 2021.

    WEN Ying. Preparation of chitosan nanofiberbased hydrogel and its application in biomedical materials[D]. Guangzhou: South China University of Technology, 2021(in Chinese).
    [71] LURAGHI A, PERI F, MORONI L. Electrospinning for drug delivery applications: A review[J]. Journal of Controlled release,2021,334:463-484. doi: 10.1016/j.jconrel.2021.03.033
    [72] 徐枫凯. 介孔二氧化硅和层状氢氧化物双载体载药复合膜的制备与药物释放性能研究[D]. 徐州: 中国矿业大学, 2022.

    XU Fengkai. Preparation and drug release properties of mesoporous silica and layered double hydroxides dual-carrier drug-loaded composite membrane[D]. Xuzhou: China University of Mining and Technology, 2022(in Chinese).
    [73] 林梦霞. 同轴纳米纤维的构建及其抗菌性能研究[D]. 天津: 河北工业大学, 2022.

    LIN Mengxia. The construction of coaxial nanofibers and their antibacterial properties[D]. Tianjin: Hebei University of Technology, 2022(in Chinese).
    [74] 张思雨, 赵立环, 刘斯璐, 等. 基于氧化石墨烯及其复合材料的纺织品抗菌整理研究进展[J]. 复合材料学报, 2021, 38(4):1043-1053. doi: 10.13801/j.cnki.fhclxb.20201202.002

    ZHANG Siyu, ZHAO Lihuan, LIU Silu, et al. Research progress of antibacterial finishing of textiles based on graphene oxide and its composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1043-1053(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201202.002
    [75] 侯晓晓. 基于杂化微球的载药织物制备方法与性能研究[D]. 上海: 东华大学, 2014.

    HOU Xiaoxiao. Preparation and study of drug-loaded textiles based on hybrid microspheres[D]. Shanghai: Donghua University, 2014(in Chinese).
    [76] DUAN X, CHEN H L, GUO C. Polymeric nanofibers for drug delivery applications: A recent review[J]. Journal of Materials Science: Materials in Medicine,2022,33(12):78. doi: 10.1007/s10856-022-06700-4
    [77] 朱维维, 肖红, 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11):177-184. doi: 10.13475/j.fzxb.20161201908

    ZHU Weiwei, XIAO Hong, SHI Meiwu. Research progress on textile finishing with assistance of supercritical carbon dioxide[J]. Journal of Textile Research,2017,38(11):177-184(in Chinese). doi: 10.13475/j.fzxb.20161201908
    [78] 丁艳然. 老鹳草—聚乙烯醇微胶囊复合织物的制备与性能研究[D]. 天津: 天津工业大学, 2018.

    DING Yanran. Preparation and performance study of stork grass-polyvinyl alcohol microencapsulated composite fabric[D]. Tianjin: Tiangong University, 2018(in Chinese).
    [79] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2):538-541.

    GUO Yuqing, ZHANG Jing, LI Song. Research progress of layer-by-layer self-assembly technology in the field of tissue engineering[J]. Materials Review,2019,33(Z2):538-541(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  286
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-07-02
  • 录用日期:  2023-07-23
  • 网络出版日期:  2023-08-02
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回