留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC/AZ91D复合材料中孔隙缺陷对裂纹萌生和扩展行为的影响

李步炜 尧军平 陈国鑫 李怡然 梁超群

李步炜, 尧军平, 陈国鑫, 等. SiC/AZ91D复合材料中孔隙缺陷对裂纹萌生和扩展行为的影响[J]. 复合材料学报, 2024, 41(3): 1554-1566. doi: 10.13801/j.cnki.fhclxb.20230711.002
引用本文: 李步炜, 尧军平, 陈国鑫, 等. SiC/AZ91D复合材料中孔隙缺陷对裂纹萌生和扩展行为的影响[J]. 复合材料学报, 2024, 41(3): 1554-1566. doi: 10.13801/j.cnki.fhclxb.20230711.002
LI Buwei, YAO Junping, CHEN Guoxin, et al. Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1554-1566. doi: 10.13801/j.cnki.fhclxb.20230711.002
Citation: LI Buwei, YAO Junping, CHEN Guoxin, et al. Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1554-1566. doi: 10.13801/j.cnki.fhclxb.20230711.002

SiC/AZ91D复合材料中孔隙缺陷对裂纹萌生和扩展行为的影响

doi: 10.13801/j.cnki.fhclxb.20230711.002
基金项目: 国家自然科学基金(52065046;51661024);江西省科技重点研发计划(20202BBEL53024);研究生创新专项(2030009101050)
详细信息
    通讯作者:

    尧军平,博士,教授,硕士生导师,研究方向为金属基复合材料 E-mail: yyyjpsz@126.com

  • 中图分类号: TB331

Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites

Funds: National Natural Science Foundation of China (52065046; 51661024); Jiangxi Provincial Science and Technology Key Research and Development Program (20202BBEL53024); Postgraduate Innovation Special Fund Project (2030009101050)
  • 摘要: 采用内聚力模型及有限元分析方法,在含真实形貌SiC颗粒增强AZ91D镁基复合材料中引入孔隙缺陷,分析不同孔隙率及孔隙形状在单轴拉伸过程中对SiC/AZ91D复合材料力学行为的影响。结果表明:孔隙长径比为1时,孔隙率为0%、0.5%、1.0%、1.5%的复合材料的抗拉强度分别为351.214 MPa、339.452 MPa、325.735 MPa、306.791 MPa,抗拉强度随孔隙率的增加逐渐降低,复合材料中裂纹萌生和裂纹扩展时间均随孔隙率增加而提前。孔隙长径比越大,其尖端部位应力集中越严重,复合材料抗拉强度也越低。无孔隙缺陷的SiC/AZ91D复合材料裂纹萌生扩展机制是颗粒与基体交界处萌生微裂纹,微裂纹相互连接形成主裂纹绕开颗粒进行扩展致使材料断裂,含孔隙的SiC/AZ91D复合材料裂纹萌生扩展机制为微裂纹在孔隙周围萌生,与颗粒和基体交界处产生的微裂纹相互连接,汇集成主裂纹绕开颗粒扩展使材料断裂。

     

  • 图  1  SiC颗粒的SEM图像及其建模

    Figure  1.  SEM images and modeling of SiC particles

    图  2  不同孔隙率的SiC/AZ91D镁基复合材料模型:(a) VC=0 (理想状况);(b) VC=0.5%;(c) VC=1.0%;(d) VC=1.5%

    Figure  2.  Modeling diagram of SiC/AZ91D magnesium-based composite materials with different void contents: (a) VC=0 (Ideal condition); (b) VC=0.5%; (c) VC=1.0%; (d) VC=1.5%

    图  3  SiC/AZ91D镁基复合材料模型及网格划分和载荷施加:(a) SiC/AZ91D模型;(b) 网格划分;(c) 载荷施加

    Figure  3.  Modeling, meshing and load application of SiC/AZ91D magnesium-based composite materials: (a) SiC/AZ91D model; (b) Meshing; (c) Load application

    图  4  不同孔隙形状的SiC/AZ91D镁基复合材料模型:(a) 长径比r=1;(b) r=2;(c) r=4

    Figure  4.  Model of SiC/AZ91D magnesium-based composite materials with different pore shapes: (a) Aspect ratio of the pore length to width r=1; (b) r=2; (c) r=4

    图  5  内聚力单元受力变形模型

    Figure  5.  Force-deformation model of cohesive element

    图  6  双线性内聚力模型

    Figure  6.  Bilinear cohesive zone model

    $ {\delta }_{\mathrm{m}}^{\text{max}} $—Maximum value of the effective displacement; $ {\delta }_{\mathrm{m}}^{\mathrm{f}} $—Effective displacement at complete failure; $ {\delta }_{\mathrm{m}}^{0} $—Effective displacement at the initiation of damage; $ {\tau }_{\mathrm{m}}^{0} $—Maximum separation stress; K—Elasticity coefficient or spring constant; D—Damage amount

    图  7  拉伸过程中含不同孔隙率SiC/AZ91D镁基复合材料应力-应变曲线

    Figure  7.  Stress-strain curves of SiC/AZ91D magnesium-based composite materials with different void content during tensile process

    图  8  拉伸过程中不同孔隙率SiC/AZ91D复合材料屈服应力值、抗拉强度和伸长率

    Figure  8.  Yield stress, tensile strength and elongation of SiC/AZ91D composite materials with different void contents during the tensile process

    图  9  孔隙周围A、B、C方向示意图

    Figure  9.  Schematic diagram of the A, B, and C directions around the void

    S—Quivalent stress (MPa)

    图  10  孔隙周围基体A、B、C 方向应力随施载时间变化曲线

    Figure  10.  Stress variation curves with respect to loading time in the A, B, and C directions of the matrix around the void

    图  11  含不同孔隙率 SiC/AZ91D 复合材料裂纹长度随时间变化曲线

    Figure  11.  Crack length variation curves with respect to time in SiC/AZ91D composite materials with different void contents

    图  12  不同孔隙率的SiC/AZ91D复合材料裂纹扩展路径:(a) VC=0%;(b) VC=0.5%;(c) VC=1.0%;(d) VC=1.5%

    Figure  12.  Crack propagation paths in SiC/AZ91D composite materials with different void contents: (a) VC=0%; (b) VC=0.5%; (c) VC=1.0%; (d) VC=1.5%

    图  13  含不同孔隙形状的SiC/AZ91D复合材料的拉伸应力-应变曲线

    Figure  13.  Stress-strain curves during tension of SiC/AZ91D composite materials with different void shapes

    图  14  拉伸过程中含不同孔隙形状SiC/AZ91D 复合材料抗拉强度和伸长率

    Figure  14.  Tensile strength and elongation of SiC/AZ91D composite materials with different void shapes during the tensile process

    图  15  含不同形状孔隙的复合材料同一区域的应力场:(a) r=1;(b) r=2;(c) r=4

    Figure  15.  Stress field in the same region of composite materials with different void shapes: (a) r=1; (b) r=2; (c) r=4

    图  16  含不同孔隙形状 SiC/AZ91D 复合材料裂纹长度随时间变化曲线

    Figure  16.  Crack length variation curves with respect to time in SiC/AZ91D composite materials with different void shapes

    图  17  含不同形状孔隙的SiC/AZ91D复合材料的裂纹扩展路径:(a) r=1;(b) r=2;(c) r=4

    Figure  17.  Crack propagation paths in SiC/AZ91D composite materials with different void shapes: (a) r=1; (b) r=2; (c) r=4

    图  18  拉伸片试样

    Figure  18.  Tensile sheet sample

    图  19  实验拉伸片试样尺寸

    Figure  19.  Experimental tensile sheet sample size

    R—Circle radius

    图  20  实验使用的WDW-E100D微机控制电子万能试验机

    Figure  20.  WDW-E100D microcomputer-controlled electronic universal testing machine used in the experiment

    图  21  含不同孔隙率的SiC/AZ91D复合材料仿真与实验拉伸应力-应变曲线对比

    Figure  21.  Comparison of simulated and experimental stress-strain curves during tensile testing of SiC/AZ91D composite materials with different void contents

    图  22  含不同孔隙率SiC/AZ91D复合材料拉伸应力-应变误差带图:(a) VC=0.5%;(b) VC=1.0%;(c) VC=1.5%

    Figure  22.  Tensile stress-strain error band diagram of SiC/AZ91D composite materials with different void contents: (a) VC=0.5%; (b) VC=1.0%; (c) VC=1.5%

    表  1  排水法测量的SiC/AZ91D复合材料孔隙率(VC)

    Table  1.   Void content (VC) measurement for SiC/AZ91D composite material using drainage method

    Sample serial numberVC/%
    1 1.56
    2 0.84
    3 0.85
    4 1.62
    5 0.83
    6 0.41
    7 1.65
    8 0.94
    9 0.48
    10 1.18
    下载: 导出CSV

    表  2  AZ91D镁合金和SiC颗粒的基本参数

    Table  2.   Basic parameters of AZ91D magnesium alloy and SiC particles

    Material$ \rho $/(kg·m−3)E/GPa$ \mu $σb/MPa
    AZ91D1800 450.33 164
    SiC32154500.172000
    Notes: $ \rho $—Material density; E—Modulus of elasticity; $ \mu $—Poisson's ratio; σb—Tensile strength.
    下载: 导出CSV

    表  3  SiC/AZ91D颗粒-界面的本构模型参数

    Table  3.   Constitutive model parameters of SiC/AZ91D particle-interface

    $ {t}_{\mathrm{n}}/\mathrm{M}\mathrm{P}\mathrm{a} $$ {t}_{\mathrm{t}}/\mathrm{M}\mathrm{P}\mathrm{a} $$ {\delta }_{\mathrm{m}\mathrm{a}\mathrm{x}}/\mathrm{m}\mathrm{m} $$ {\delta }_{\mathrm{f}}/\mathrm{m}\mathrm{m} $
    4004000.000150.00005
    Notes: $ {t}_{\mathrm{n}} $—Interface normal nominal stress; $ {t}_{\mathrm{t}} $—Interfacial tangential nominal stress; $ {\delta }_{\mathrm{m}\mathrm{a}\mathrm{x}} $—Destruction displacement; $ {\delta }_{\mathrm{f}} $—Material complete failure separation.
    下载: 导出CSV

    表  4  AZ91D镁合金的Johnson-Cook (J-C)本构参数

    Table  4.   Johnson-Cook (J-C) constitutive model parameters for AZ9ID magnesium alloy

    A/MPaB/MPanC${u}_{{\rm{f}}}^{\mathrm{p}\mathrm{l} }/{\rm{mm} }$
    1646000.2830.0210.00015
    Notes: A—Yield strength of AZ91D matrix under static load; B—Hardening constant; n—Hardening exponent; C—Strain rate constant; $ {u}_{\mathrm{f}}^{\mathrm{p}\mathrm{l}} $—Failure displacement.
    下载: 导出CSV

    表  5  SiC颗粒本构模型及失效参数

    Table  5.   Constitutive model and failure parameters of SiC particles

    ParameterValue
    G/GPa193
    A00.96
    B00.35
    C00.009
    M1
    N0.65
    T1/MPa750
    SFMAX/MPa1300
    LHE/MPa11700
    PHEL/MPa5130
    D10.48
    D20.48
    K1220000
    K2361000
    K30
    Notes: G—Shear modulus; A0—Strength parameter before damage; B0—Strength parameter when damage occurs; C0—Strain rate constant; M—Pressure index when damage occurs; N—Pressure index when no damage occurs; T1—Cut-off pressure; SFMAX—Maximum fracture strength; LHE—Hugoniot elastic limit; PHEL—Hugoniot elastic limit pressure; D1, D2—Fracture constant; K1, K2, K3—Material parameter.
    下载: 导出CSV
  • [1] 褚兵强. 低能量冲击对含孔隙CFRP层合板力学性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    CHU Bingqiang. The effects of low-energy impact on the mechanical properties of carbon fiber reinforced polymer laminates with voids[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [2] 李钊. 碳纤维复合材料孔隙率超声检测与评价技术研究[D]. 杭州: 浙江大学, 2014.

    LI Zhao. Research on ultrasonic detection and evaluation technique for porosity of carbon fiber composites[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
    [3] 李亚星, 李洪双, 陈普会. 考虑孔隙随机性的SiC/SiC复合材料力学性能参数概率分析[J/OL]. 应用力学学报: 1-12[2024-01-08].

    LI Yaxing, LI Hongshuang, CHEN Puhui. Probability analysis of mechanical properties parameters of SiC/SiC composites considering pore randomness[J/OL]. Chinese Journal of Applied Mechanics: 1-12[2024-01-08](in Chinese).
    [4] HONG Y, WANG W J, LIU J Q, et al. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC[J]. Transactions of Nonferrous Metals Society of China,2019,29(5):941-949. doi: 10.1016/S1003-6326(19)65003-X
    [5] GAO M Q, GUO E Y, CHEN Z N, et al. Revealing the role of micropore defects in tensile deformation of a B4Cp/Al composite using an actual three-dimensional model[J]. Journal of Materials Research and Technology,2023,22:3146-3155. doi: 10.1016/j.jmrt.2022.12.145
    [6] CHAMBERS A R, EARL J S, SQUIRES C A, et al. The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications[J]. International Journal of Fatigue,2006,28(10):1389-1398. doi: 10.1016/j.ijfatigue.2006.02.033
    [7] KOSMANN N, KARSTEN J M, SCHUETT M, et al. Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission[J]. Composites Part B: Engineering,2015,70:184-188.
    [8] 张阿樱. 孔隙率对碳纤维/环氧树脂层压板力学性能的影响[J]. 中国机械工程, 2010, 21(24):3014-3018.

    ZHANG A'ying. Experimental characterization of porosity and mechanical properties of carbon/epoxy composite laminates[J]. China Mechanical Engineering,2010,21(24):3014-3018(in Chinese).
    [9] 张阿樱, 张东兴. 不同孔隙率 CFRP 层合板冲击后力学性能试验表征[J]. 材料科学与工艺, 2014, 46(3): 54-60.

    ZHANG A'ying, ZHANG Dongxing. Research on the static mechanical properties of CFRP laminates with different void contents[J]. Materials Science and Technology, 2014, 46(3): 54-60(in Chinese).
    [10] RICOTTA M, QUARESIMIN M, TALREJA R. Mode I strain energy release rate in composite laminates in the presence of voids[J]. Composites Science and Technology,2008,68(13):2616-2623. doi: 10.1016/j.compscitech.2008.04.028
    [11] SUO Y Y, WANG B, JIA P R, et al. The effect of fabrication defects on the mechanical behaviors of metal matrix composites[J]. Materialstoday Communications,2022,25:101663. doi: 10.1016/j.mtcomm.2020.101663
    [12] 乔海燕, 任学冬, 史亦韦, 等. GH4169高温合金涡轮盘表面径轴向裂纹的渗透检测可行性[J]. 航空材料学报, 2016, 36(6):92-96. doi: 10.11868/j.issn.1005-5053.2016.6.015

    QIAO Haiyan, REN Xuedong, SHI Yiwei, et al. Feasibility of penetrant detection of radial and axial cracks on the surface of GH4169 superalloy turbine disk[J]. Journal of Aeronautical Materials,2016,36(6):92-96(in Chinese). doi: 10.11868/j.issn.1005-5053.2016.6.015
    [13] 李灼华. 射线检测在复合材料无损检测中的应用[J]. 科技传播, 2014, 6(3): 179, 175.

    LI Zhuohua. Application of radiographic testing in nondestructive testing of composite materials[J]. Science and Technology Communication, 2014, 6(3): 179, 175(in Chinese).
    [14] 陈文玮. 超声检测技术在金属材料焊接成型中的应用[J]. 山西冶金, 2022, 45(3):264-265. doi: 10.16525/j.cnki.cn14-1167/tf.2022.03.108

    CHEN Wenwei. Application of ultrasonic testing technology in welding and forming of metal materials[J]. Shanxi Metallurgy,2022,45(3):264-265(in Chinese). doi: 10.16525/j.cnki.cn14-1167/tf.2022.03.108
    [15] 孟祥姝, 李武胜. 单向复合材料孔隙率测试技术与分布规律研究[J]. 高科技纤维与应用, 2021, 46(4):52-55. doi: 10.3969/j.issn.1007-9815.2021.04.008

    MENG Xiangshu, LI Wusheng. Research on porosity testing technology and distribution law of unidirectional composite materials[J]. High-tech Fiber and Application,2021,46(4):52-55(in Chinese). doi: 10.3969/j.issn.1007-9815.2021.04.008
    [16] 凌振宝, 邹得宝, 张堃, 等. 岩矿石孔隙度测量方法[J]. 吉林大学学报(地球科学版), 2011, 41(3):921-924. doi: 10.13278/j.cnki.jjuese.2011.03.032

    LING Zhenbao, ZOU Debao, ZHANG Kun, et al. Measuring method of rock ore porosity[J]. Journal of Jilin University (Earth Science Edition),2011,41(3):921-924(in Chinese). doi: 10.13278/j.cnki.jjuese.2011.03.032
    [17] 耿昆. SiCp/Al复合材料基于微细观的有限元建模拟实[D]. 上海: 上海交通大学, 2017.

    GENG Kun. Finite element modeling and simulation of SiCp/Al composites based on micro view[D]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese).
    [18] 邱鑫. 挤压铸造SiCp/AZ91镁基复合材料的显微结构与性能[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    QIU Xin. Microstructure and properties of squeeze cast SiCp/AZ91 magnesium matrix composites[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
    [19] 王涛. 高体积分数SiCp/Al复合材料高速铣削基础研究[D]. 北京: 北京理工大学, 2015.

    WANG Tao. Fundamental study on high speed milling of high volume fraction SiCp/Al composite[D]. Beijing: Beijing Institute of Technoloy, 2015(in Chinese).
    [20] TANG J M, DENG Q C. Experiment and simulation of SiC particle-reinforced aluminum matrix composites fabricated by friction stir processing[J]. The International Journal of Advanced Manufacturing Technology,2022,122(2):895-910. doi: 10.1007/s00170-022-09967-7
    [21] 张磊刚. SiCp/Mg 多级纳米复合材料的压缩断裂特性研究[D]. 成都: 西南交通大学, 2018.

    ZHANG Leigang. Research on compressive fracture properties of SiCp/Mg hierarchical nanocomposites[D]. Chengdu: Southwest Jiaotong University, 2018(in Chinese).
    [22] SU Y S, LI Z, YU Y, et al. Structural modeling and tensile simulation of graphene-reinforced metal matrix composites[J]. Science China Materials,2018,61(1):112-124. doi: 10.1007/s40843-017-9142-2
    [23] 梁超群, 尧军平, 李怡然, 等. SiC/AZ91D镁基复合材料单轴压缩过程中裂纹萌生扩展机制[J]. 复合材料学报, 2023, 40(7): 4282-4293.

    LIANG Chaoqun, YAO Junping, LI Yiran, et al. Mechanism of crack initiation and propagation during uniaxial compression of SiC/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4282-4293(in Chinese).
    [24] 夏聪聪. 裂纹尖端拘束对单边缺口拉伸试样裂纹扩展阻力曲线影响研究[D]. 天津: 天津大学, 2021.

    XIA Congcong. Research on the effect of crack tip constraint on the crack propagation resistance curve of unilateral notched tensile specimens[D]. Tianjin: Tianjin University, 2021(in Chinese).
    [25] ZHANG J, OUYANG Q B, GUO Q, et al. 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites[J]. Composites Science and Technology,2016,123:1-9. doi: 10.1016/j.compscitech.2015.11.014
    [26] 魏俊磊. 颗粒增强镁基复合材料力学行为的研究[D]. 太原: 太原理工大学, 2018.

    WEI Junlei. Study on mechanical behavior of particle reinforced magnesium matrix composites[D]. Taiyuan: Taiyuan University of Technology, 2018(in Chinese).
    [27] 卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 36(S1):85-94. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.s1.014

    LU Zixing. The cohesion model of composite material interface and its application[J]. Journal of Solid Mechanics,2015,36(S1):85-94(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.s1.014
    [28] 翁琳. 基于微观结构的颗粒增强复合材料力学性能数值分析[D]. 上海: 上海交通大学, 2015.

    WENG Lin. Numerical analysis of mechanical properties of particle-reinforced composites based on microstructure[D]. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese).
    [29] 张炯, 屈展, 黄其青, 等. 基于内聚力模型的圆形夹杂与基体界面渐进脱粘分析[J]. 西安石油大学学报(自然科学版), 2014, 29(3):106-110, 12.

    ZHANG Jiong, QU Zhan, HUANG Qiqing, et al. Progressive debonding analysis of circular inclusion and matrix interface based on cohesion model[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2014,29(3):106-110, 12(in Chinese).
    [30] 周圣杰. B4C/2024Al复合材料变形断裂行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHOU Shengjie. Research on deformation and fracture behavior of B4C/2024Al composites[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [31] 周爽. 纳米增强体镁基复合材料力学性能数值模拟[D]. 沈阳: 沈阳工业大学, 2017.

    ZHOU Shuang. Numerical simulation of mechanical properties of nano-reinforced magnesium matrix composites[D]. Shenyang: Shenyang University of Technology, 2017(in Chinese).
    [32] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials[J]. AIP Conference Proceedings, 1994, 309(1): 981-984.
    [33] XIANG D H, SHI Z L, FENG H, et al. Finite element analysis of ultrasonic assisted milling of SiCp/Al composites[J]. The International Journal of Advanced Manufacturing Technology,2019,105:3477-3488.
    [34] 张世强. 曲线回归的拟合优度指标的探讨[J]. 中国卫生统计, 2002, 19(1):9-11. doi: 10.3969/j.issn.1002-3674.2002.01.003

    ZHANG Shiqiang. Study on the goodness-of-fit in dex of curve regression[J]. China Health Statistics,2002,19(1):9-11(in Chinese). doi: 10.3969/j.issn.1002-3674.2002.01.003
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  150
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-01
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回