留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热膨胀工艺制备不同厚度泡沫夹芯复合材料的低速冲击性能

闵伟 程乐乐 余木火 孙泽玉

闵伟, 程乐乐, 余木火, 等. 热膨胀工艺制备不同厚度泡沫夹芯复合材料的低速冲击性能[J]. 复合材料学报, 2024, 41(3): 1611-1625. doi: 10.13801/j.cnki.fhclxb.20230710.003
引用本文: 闵伟, 程乐乐, 余木火, 等. 热膨胀工艺制备不同厚度泡沫夹芯复合材料的低速冲击性能[J]. 复合材料学报, 2024, 41(3): 1611-1625. doi: 10.13801/j.cnki.fhclxb.20230710.003
MIN Wei, CHENG Lele, YU Muhuo, et al. Low-velocity impact properties of foam sandwich composites with different thicknesses prepared via thermal expansion molding process[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1611-1625. doi: 10.13801/j.cnki.fhclxb.20230710.003
Citation: MIN Wei, CHENG Lele, YU Muhuo, et al. Low-velocity impact properties of foam sandwich composites with different thicknesses prepared via thermal expansion molding process[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1611-1625. doi: 10.13801/j.cnki.fhclxb.20230710.003

热膨胀工艺制备不同厚度泡沫夹芯复合材料的低速冲击性能

doi: 10.13801/j.cnki.fhclxb.20230710.003
基金项目: 上海汽车工业科技发展基金会(1913);纤维材料改性国家重点实验室(KF2203)
详细信息
    通讯作者:

    孙泽玉,博士,副研究员,硕士生导师,研究方向为复合材料结构设计及其低成本成型工艺 E-mail: sunzeyu@dhu.edu.cn

  • 中图分类号: TB332

Low-velocity impact properties of foam sandwich composites with different thicknesses prepared via thermal expansion molding process

Funds: Shanghai Automotive Industry Technology Development Foundation of China (1913); State Key Laboratory of Fiber Material Modification (KF2203)
  • 摘要: 热膨胀工艺能够一体化成型各种泡沫夹芯复合材料。选择初始厚度为1 mm的可膨胀环氧泡沫预浸胶,通过控制模具型腔尺寸以控制不同成型压力制备4种不同厚度的泡沫夹芯板。以10 J和42 J冲击能量研究热膨胀工艺和芯材厚度对泡沫夹芯复合材料低速冲击性能的影响。通过ABAQUS有限元分析、超声C扫描对比试验数据分析了不同试样的损伤模式。通过冲击后压缩试验分析了不同试样的损伤容限。结果发现更高膨胀倍率的泡沫芯子,产生更低的膨胀力,泡沫夹芯板的抗冲击强度降低,但结构具有更优异的吸能效果。高能量和低强度的泡沫芯子都会导致蒙皮更高的损伤程度。试样在10 J能量冲击后的压缩强度衰减率为8.2%,而42 J能量冲击后的压缩强度衰减率达到38.2%。成型压力和芯子的厚度对泡沫夹芯板的损伤容限影响很小。研究确定了热膨胀工艺成型泡沫夹芯复合材料具有高的结构和抗冲击性能可设计性。

     

  • 图  1  (a) 热膨胀成型工艺制备泡沫夹芯复合材料示意图;(b) 模具及试样铺层示意图;(c) 泡沫膨胀不同倍率制备的夹芯复合材料断面图

    Figure  1.  (a) Schematic diagram of foam sandwich composites prepared via thermal expansion molding process; (b) Schematic diagram of mold and sample lay-up; (c) Sectional diagram of sandwich composites prepared by foam expansion at different ratios

    图  2  热膨胀泡沫膨胀力测试方法:(a) 高低温试验箱和万能试验机;(b) 试验箱内加载示意图;(c) 试验试样及模具示意图

    Figure  2.  Test method of expansion pressure of thermal expansion foam: (a) High and low temperature test box and universal testing machine; (b) Schematic diagram of loading in the test box; (c) Schematic diagram of test sample and mold

    图  3  不同泡沫夹芯板(X1、X2、X3、X4 )制备工艺曲线

    Figure  3.  Preparation process curves of different foam sandwich panels (X1, X2, X3, X4 )

    图  4  (a) 冲击实验试样;(b) 冲击实验试样夹持示意图;(c) 冲击后试样超声C扫描示意图

    Figure  4.  (a) Impact test samples; (b) Clamping diagram of the impact test samples; (c) Ultrasonic C-scan diagram of the samples after impact

    图  5  冲击仿真网格模型

    Figure  5.  Mesh model of impact simulation

    图  6  冲击后压缩(CAI)试验示意图

    Figure  6.  Schematic diagram of compression after impact (CAI) test

    图  7  X1~X4试样在10 J冲击能量下得到的载荷-位移曲线(a)、冲击能量-时间曲线(b)、位移-时间曲线(c)、峰值载荷和吸收能量的柱形图(d)

    Figure  7.  Load-displacement curves (a), impact energy-time curves (b), displacement-time curves (c) and bar graph of peak load and absorbed energy (d) obtained for X1-X4 samples at 10 J impact energy

    图  8  X1~X4试样在42 J冲击能量下得到的载荷-位移曲线(a)、冲击能量-时间曲线(b)、位移-时间曲线(c)、峰值载荷和吸收能量的柱形图(d)

    Figure  8.  Load-displacement curves (a), impact energy-time curves (b), displacement-time curves (c) and bar graph of peak load and absorbed energy (d) obtained for X1-X4 samples at 42 J impact energy

    图  9  X1~X4试样在10 J冲击能量下的宏观表面失效模式、局部放大图和应力云图

    Figure  9.  Macroscopic surface failure modes, local magnification and stress clouds of X1-X4 samples at 10 J impact energy

    S—Stress (MPa); SNEG—Surface negative

    图  10  X1~X4试样在42 J冲击能量下的宏观表面失效模式、局部放大图和应力云图

    Figure  10.  Macroscopic surface failure modes, local magnification and stress clouds of X1-X4 samples at 42 J impact energy

    图  11  10 J冲击能量得到的试样正面位移云图:(a) X1;(b) X2;(c) X3;(d) X4

    Figure  11.  Pit depth on the front obtained by 10 J impact energy: (a) X1; (b) X2; (c) X3; (d) X4

    U—Displacement (mm)

    图  12  42 J冲击能量得到的试样正面位移云图:(a) X1;(b) X2;(c) X3;(d) X4

    Figure  12.  Pit depth on the front obtained by 42 J impact energy: (a) X1; (b) X2; (c) X3; (d) X4

    图  13  X1~X4试样超声C扫表面损伤形貌:(a) 10 J正面;(b) 42 J正面;(c) 42 J反面

    Figure  13.  Surface damage morphologies of ultrasonic C-scan for X1-X4 samples: (a) 10 J front; (b) 42 J front; (c) 42 J back

    图  14  不同试样在10 J冲击能量下的表面损伤云图(纤维拉伸、纤维压缩、基体拉伸和基体压缩)

    Figure  14.  Surface failure modes of different samples under 10 Jimpact energy (Fiber tensile, fiber compression, matrix tensile and matrix compression)

    图  15  不同试样在42 J冲击能量下的表面损伤云图(纤维拉伸、纤维压缩、基体拉伸和基体压缩)

    Figure  15.  Surface failure modes of different samples under 42 J impact energy (Fiber tensile, fiber compression, matrix tensile and matrix compression)

    图  16  X1~X4试样在冲击前(a)、10 J冲击能量(b)、42 J冲击能量(c)下得到的压缩载荷-位移曲线和峰值载荷柱形图(d)

    Figure  16.  Compression load-displacement curves of X1-X4 samples obtained at before impact (a), 10 J impact energy (b), 42 J impact energy (c) and bar graph of peak load (d)

    图  17  不同试样冲击后压缩试验得到的宏观表面失效图

    Figure  17.  Macroscopic surface failure modes obtained from compression after impact tests for different samples

    图  18  不同试样冲击后压缩试验得到的宏观断面失效图

    Figure  18.  Failure modes of macroscopic sections obtained from compression after impact tests for different samples

    表  1  有限元分析(FEA)相关的材料参数

    Table  1.   Material parameters related to finite element analysis (FEA)

    MaterialsDensity/
    (kg·m−3)
    Tensile strength/MPaYoung's modulus/MPaCompressive strength/MPaPoisson's
    ratio v
    Shear strength τ/MPaShear modulus G/MPa
    X1 M-13187.983953.4703.9162.28
    X2 M-11624.682012.3101.9539.29
    X3 M-11092.231701.9501.6431.26
    X4 M-1 781.341130.9901.0821.17
    805 (XT)61340 (E1)509 (XC)0.04 (v12)112 (S12)7600 (G12)
    CFRP1580805 (YT)61340 (E2)509 (YC)0.30 (v13) 59 (S13)2700 (G13)
    50 (ZT) 6900 (E3)170 (ZC)0.30 (v23) 59 (S23)2700 (G23)
    Cohesive200012000.32385
    Notes: XT, YT, ZT—Tensile strength of the three directions of CFRP; E1, E2, E3—Young's modulus of the three directions of CFRP; XC, YC, ZC—Compressive strength of the three directions of CFRP; v12, v13, v23—Poisson's ratio; S12, S13, S23—Shear strength; G12, G13, G23—Shear modulus; CFRP—Carbon fber reinforced polymer; M-1—Epoxy resin based rigid foam with thermal expansion function.
    下载: 导出CSV

    表  2  冲击有限元分析模型数据

    Table  2.   Finite element analysis model data of impact test

    Sample numberPartThicknessMesh styleMesh number
    X1CFRP2 mm+2 mm
    2 mm
    0
    SC8R141880
    FoamC3D8R 14188
    CohesiveCOH3D8 7094
    X2CFRP2 mm+2 mm
    4 mm
    0
    SC8R141880
    FoamC3D8R 14188
    CohesiveCOH3D8 7094
    X3CFRP2 mm+2 mm
    6 mm
    0
    SC8R141880
    FoamC3D8R 14188
    CohesiveCOH3D8 7094
    X4CFRP
    Foam
    Cohesive
    2 mm+2 mm
    8 mm
    0
    SC8R
    C3D8R
    COH3D8
    141880
    28376
    7094
    Notes: SC8R—8-node quadrilateral in-plane general continuous shell elements; C3D8R—Linear 3D reduced integration solid elements; COH3D8—Cohesive element.
    下载: 导出CSV

    表  3  X1~X4试样冲击试验损伤数据对比

    Table  3.   Comparison of impact test damage data for X1-X4 samples

    Sample numberStress/MPa (FEA)Displacement/mmArea of damage/mm2
    ExperimentFEAError/%ExperimentFEAError/%C-scanError/%
    X1-10 J 960 2.71 2.45 9.59 39.57 45.23 14.30 44.16 11.60
    X2-10 J 971 2.92 2.68 8.22 47.76 54.37 13.84 54.08 13.23
    X3-10 J 1086 3.20 3.16 1.25 58.06 67.89 16.93 65.01 11.97
    X4-10 J 1111 3.26 3.38 3.68 69.36 80.21 15.64 76.94 10.93
    X1-42 J 1119 6.91 6.76 2.17 114.93 136.64 18.89 134.71 17.21
    X2-42 J 1067 7.67 7.63 0.52 145.19 167.59 15.43 160.52 10.56
    X3-42 J 1028 9.04 9.19 1.65 206.02 238.96 15.99 229.54 11.42
    X4-42 J 1055 11.44 11.08 3.15 298.49 353.25 18.35 320.31 7.31
    下载: 导出CSV
  • [1] 徐佳佳, 方海, 韩娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性[J]. 复合材料学报, 2022, 39(8):3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002

    XU Jiajia, FANG Hai, HAN Juan, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression[J]. Acta Materiae Compositae Sinica,2022,39(8):3965-3981(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211117.002
    [2] 辛志东, 杜娟, 聂彦平, 等. 某全泡沫夹芯复合材料无人机平尾的强度分析与验证[J]. 纤维复合材料, 2022, 39(4):61-64.

    XIN Zhidong, DU Juan, NIE Yanping, et al. Strength analysis and verification of an all-foam sandwich composite UAV flat tail[J]. Fiber Composites,2022,39(4):61-64(in Chinese).
    [3] ONDER A, ROBINSON M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles[J]. Composite Structures,2020,233:111576. doi: 10.1016/j.compstruct.2019.111576
    [4] DOGAN A. Low-velocity impact, bending, and compression response of carbon fiber/epoxy-based sandwich composites with different types of core materials[J]. Journal of Sandwich Structures & Materials,2021,23(6):1956-1971.
    [5] KANG G H, JOUNG C, KIM H G, et al. Manufacturing, thermoforming, and recycling of glass fiber/PET/PET foam sandwich composites: DOE analysis of recycled materials[J]. Polymer Composites,2022,43(12):8807-8817. doi: 10.1002/pc.27063
    [6] 石昌, 王继辉, 朱俊, 等. 梯形格栅结构增强泡沫夹芯复合材料平压性能[J]. 复合材料学报, 2022, 39(2):590-600. doi: 10.13801/j.cnki.fhclxb.20210506.002

    SHI Chang, WANG Jihui, ZHU Jun, et al. Flatwise compression properties of trapezoidal lattice-web reinforced foam core sandwich composites[J]. Acta Materiae Compositae Sinica,2022,39(2):590-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210506.002
    [7] UYTTERSPROT J, DE CORTE W, INGELBINCK B. Influence of SLS design requirements on the material consumption and self-weight of web-core sandwich panel FRP composite footbridges[J]. Composite Structures,2021,262:113334. doi: 10.1016/j.compstruct.2020.113334
    [8] TAO J, LI F, ZHU R, et al. Compression properties of a novel foam-core sandwich cylinder reinforced with stiffeners[J]. Composite Structures,2018,206:499-508. doi: 10.1016/j.compstruct.2018.08.085
    [9] 曹晓明, 顾轶卓, 李超, 等. 碳纤维复合材料方管硅橡胶热膨胀成型工艺研究[J]. 玻璃钢/复合材料, 2012(6):64-68, 46.

    CAO Xiaoming, GU Yizhuo, LI Chao, et al. Research on thermal expansion molding process of carbon fiber composite square tube silicone rubber[J]. FRP/Composites,2012(6):64-68, 46(in Chinese).
    [10] 张艳芳, 刘志杰, 胡克伟, 等. 硅橡胶热膨胀法成型复合材料制件的研究[J]. 塑料工业, 2014, 42(12):55-58. doi: 10.3969/j.issn.1005-5770.2014.12.015

    ZHANG Yanfang, LIU Zhijie, HU Kewei, et al. Research on composite parts formed by thermal expansion of silicone rubber[J]. China Plastics Industry,2014,42(12):55-58(in Chinese). doi: 10.3969/j.issn.1005-5770.2014.12.015
    [11] 杜刚, 曾竟成, 张长安, 等. 硅橡胶热膨胀模塑成型法制备碳/环氧复合材料管研究[J]. 纤维复合材料, 2003(2):26-28. doi: 10.3969/j.issn.1003-6423.2003.02.008

    DU Gang, ZENG Jingcheng, ZHANG Chang'an, et al. Preparation of carbon/epoxy composite pipe by thermal expansion molding of silicone rubber[J]. Fiber Composites,2003(2):26-28(in Chinese). doi: 10.3969/j.issn.1003-6423.2003.02.008
    [12] MIN W, TAO L, YAN Z, et al. Feasibility verification and bending property of web-reinforced foam sandwich composites prepared via thermal expansion molding process[J]. Composite Structures,2022,294:115720. doi: 10.1016/j.compstruct.2022.115720
    [13] 张钟. 热膨胀模压法成型复合材料夹层结构工艺及其性能研究[D]. 南京: 南京航空航天大学, 2007.

    ZHANG Zhong. Study on the process and properties of composite sandwich structure formed by thermal expansion molding[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [14] 施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2023, 40(2):782-793. doi: 10.13801/j.cnki.fhclxb.20220323.001

    SHI Herong, WANG Jihui, NI Aiqing, et al. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica,2023,40(2):782-793(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220323.001
    [15] 杨张韬, 倪爱清, 王继辉, 等. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 253-261.

    YANG Zhangtao, NI Aiqing, WANG Jihui, et al. Simulation and optimization of vacuum-assisted resin transfer process for porous foam sandwich composites[J]. Materials Reports, 38(2): 253-261(in Chinese).
    [16] 袁超, 邱启艳. 复合材料泡沫夹层结构翼尖小翼成型技术研究[J]. 科技与创新, 2019(6):62-63. doi: 10.15913/j.cnki.kjycx.2019.06.062

    YUAN Chao, QIU Qiyan. Research on forming technology of composite foam sandwich structure wingtip winglet[J]. Science, Technology and Innovation,2019(6):62-63(in Chinese). doi: 10.15913/j.cnki.kjycx.2019.06.062
    [17] AL-SHAMARY A K J, KARAKUZU R, OZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations[J]. Journal of Sandwich Structures & Materials,2016,18(6):754-768. doi: 10.1177/109963621665326
    [18] 孙子恒, 王继辉, 倪爱清, 等. 不同铺层复合材料夹芯结构低速冲击与冲击后剩余强度研究[J]. 复合材料科学与工程, 2020(11):102-110. doi: 10.3969/j.issn.1003-0999.2020.11.017

    SUN Ziheng, WANG Jihui, NI Aiqing, et al. Study on low-velocity impact and residual strength of composite sandwich structures with different lay-up layers[J]. Composite Materials Science and Engineering,2020(11):102-110(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.11.017
    [19] DOGAN A, ARIKAN V. Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites[J]. Composites Part B: Engineering,2017,127:63-69. doi: 10.1016/j.compositesb.2017.06.027
    [20] NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental impact damage study of a Z-pinned foam core sandwich composite[J]. Journal of Sandwich Structures & Materials,2012,14(4):469-486.
    [21] KAYA G, SELVER E. Impact resistance of Z-pin-reinforced sandwich composites[J]. Journal of Composite Materials,2019,53(26-27):3681-3699. doi: 10.1177/0021998319845428
    [22] 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J]. 复合材料学报, 2022, 39(7):3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005

    CHENG Shuliang, WU Lingjie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica,2022,39(7):3641-3651(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210903.005
    [23] HE W, LIU J, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composite Structures,2016,158:30-43. doi: 10.1016/j.compstruct.2016.09.009
    [24] HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures, 2022, 284: 115120.
    [25] 孙士勇, 秦进, 杨睿, 等. 缝纫泡沫夹芯复合材料细观纤维柱破坏行为[J]. 复合材料学报, 2020, 37(4):837-844. doi: 10.13801/j.cnki.fhclxb.20190617.003

    SUN Shiyong, QIN Jin, YANG Rui, et al. Fracture behavior of meso-fiber column in the stitched foam sandwich composites[J]. Acta Materiae Compositae Sinica,2020,37(4):837-844(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190617.003
    [26] MIN W, QI L, ZHAO X, et al. Preparation and properties of expandable epoxy foam prepreg for sandwich composites prepared via thermal expansion molding process[J]. Journal of Applied Polymer Science,2022,140(7):53469.
    [27] TAO L, MIN W, QI L, et al. The hygrothermal aging process and mechanism of CFRP papered by prepreg that may be stored at room temperature[J]. Polymer Degradation and Stability,2020,182:109395. doi: 10.1016/j.polymdegradstab.2020.109395
    [28] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—2015[S]. West Conshohocken: ASTM, 2015.
    [29] GU J, CHEN P. Some modifications of Hashin's failure criteria for unidirectional composite materials[J]. Composite Structures,2017,182:143-152. doi: 10.1016/j.compstruct.2017.09.011
    [30] DUARTE A P C, DÍAZ SÁEZ A, SILVESTRE N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites[J]. Thin-Walled Structures,2017,115:277-288. doi: 10.1016/j.tws.2017.02.020
    [31] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M—2007[S]. West Conshohocken: ASTM, 2007.
    [32] YANG B, WANG Z, ZHOU L, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures,2015,132:1129-1140. doi: 10.1016/j.compstruct.2015.07.058
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  177
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-06-14
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回