留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响

崔雪峰 王俊珩 张聪琳 成来飞 叶昉 刘持栋

崔雪峰, 王俊珩, 张聪琳, 等. 聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响[J]. 复合材料学报, 2023, 40(11): 6416-6429. doi: 10.13801/j.cnki.fhclxb.20230706.001
引用本文: 崔雪峰, 王俊珩, 张聪琳, 等. 聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响[J]. 复合材料学报, 2023, 40(11): 6416-6429. doi: 10.13801/j.cnki.fhclxb.20230706.001
CUI Xuefeng, WANG Junheng, ZHANG Conglin, et al. Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6416-6429. doi: 10.13801/j.cnki.fhclxb.20230706.001
Citation: CUI Xuefeng, WANG Junheng, ZHANG Conglin, et al. Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6416-6429. doi: 10.13801/j.cnki.fhclxb.20230706.001

聚合物转化SiBN系陶瓷组分对其热稳定性及电磁透波性能的影响

doi: 10.13801/j.cnki.fhclxb.20230706.001
基金项目: 国家自然科学基金(52072304;51872229);国家111项目(B08040);ND基础研究基金(G2022WD)
详细信息
    通讯作者:

    刘持栋,博士,副研究员,硕士生导师,研究方向为陶瓷基复合材料 E-mail:liuchidong@nwpu.edu.cn

  • 中图分类号: TB332

Effect of polymer derived SiBN ceramic components on thermal stability and electromagnetic wave transparency

Funds: Natural Science Foundation of China (52072304; 51872229); 111 Project of China (B08040); ND Basic Research Funds (G2022WD)
  • 摘要: 对聚硅硼氮烷(PSNB)、三甲胺环硼氮烷(PBN)及混合先驱体陶瓷化过程分别进行了研究,掌握了热处理温度对先驱体转化陶瓷微结构及性能的影响规律。经NH3裂解后,聚合物转化陶瓷(PDC)-SiBN中形成了B—Si—O—N多元网络,具有良好的抗析晶能力,经过不超过1500℃的热处理后,陶瓷抗吸潮能力提升,介电常数在3.0~3.6之间,损耗约0.003。经NH3裂解的PDC-BN中形成了B—N—O结构,随温度升高逐渐分解,转变为BN。将先驱体按照一定比例混合,可以实现对聚合物转化陶瓷元素组分的调控。混合先驱体转化陶瓷中由于异质界面的存在及多元网络减少,陶瓷热稳定性及介电性能均介于单种先驱体转化陶瓷之间,具有一定的性能可设计性。

     

  • 图  1  聚硅硼氮烷(PSNB)先驱体特征:(a)分子结构示意图;(b) TG-DSC曲线

    Figure  1.  Characteristics of polyborosilazane (PSNB): (a) Molecule structure; (b) TG-DSC curves

    图  2  NH3裂解后SiBN陶瓷的Raman图谱

    ID—Intensity of D peak ; IG—Intensity of G peak

    Figure  2.  Raman spectrum of SiBN ceramic after pyrolysis under NH3

    图  3  NH3裂解后SiBN陶瓷XPS图谱:(a)全谱;Si (b)、B (c)、N (d)、O (e)、C (f)元素的高分辨图谱

    Figure  3.  XPS spectra of elements in SiBN ceramic after pyrolysis under NH3: (a) Full spectrum; High-resolution spectra of Si (b), B (c), N (d), O (e) and C (f) in ceramic

    图  4  不同温度热处理SiBN陶瓷后性能变化:(a)质量变化;(b)密度及开气孔率;(c)线收缩率;(d) XRD图谱

    Figure  4.  Performance evolution of SiBN ceramics after heat treatment at different temperatures: (a) Mass residual; (b) Density and open porosity; (c) Linear shrinkage; (d) XRD patterns of SiBN ceramics

    图  5  陶瓷化过程中PSNB和不同温度热处理后SiBN陶瓷的红外图谱

    Figure  5.  FTIR spectra of PSNB during ceramization process and SiBN ceramics after heat treatment at different temperatures

    图  6  不同温度热处理后SiBN陶瓷XPS高分辨图谱:(a) Si;(b) N;(c) B

    Figure  6.  XPS high-resolution spectra of elements in SiBN ceramic after heat treatment at different temperatures: (a) Si; (b) N; (c) B

    图  7  不同温度热处理后SiBN陶瓷介电性能:(a)介电常数;(b)介电损耗

    Figure  7.  Dielectric properties of SiBN ceramics after heat treatment at different temperatures: (a) Dielectric constant; (b) Dielectric loss

    ε'—Real part of dielectric constant; ε''—Imaginary part of dielectric constant

    图  8  三甲胺环硼氮烷(PBN)先驱体特征:(a)分子结构示意图;(b) TG-DSC曲线

    Figure  8.  Characteristics of tris(methylamino)borane (PBN): (a) Molecule structure; (b) TG-DSC curves

    图  9  NH3裂解后BN陶瓷XPS图谱:全谱(a)及B (b)、N (c)、O (d)、C (e)元素的高分辨图谱

    Figure  9.  XPS spectra of elements in BN ceramic after pyrolysis under NH3: Full spectrum (a) and high-resolution spectra of B (b), N (c), O (d) and C (e) in ceramic

    图  10  不同温度热处理后BN陶瓷性能:(a)质量变化;(b) XRD图谱;(c) 1600℃热处理后BN陶瓷显微结构

    Figure  10.  Properties of BN ceramics after heat treatment at different temperatures: (a) Mass residual; (b) XRD patterns of BN ceramics; (c) Microstructure of BN ceramic after heat treatment at 1600℃

    图  11  陶瓷化过程中PBN和不同温度热处理后BN陶瓷的红外图谱

    Figure  11.  FTIR spectra of PBN during ceramization process and BN ceramics after heat treatment at different temperatures

    图  12  不同温度热处理后BN陶瓷XPS图谱:B (a)和N (b)元素的高分辨图谱

    Figure  12.  XPS spectra of elements in BN ceramic after heat treatment at different temperatures: High-resolution spectra of B (a) and N (b) elements in BN ceramics

    图  13  不同温度热处理后BN陶瓷介电性能:(a) 介电常数;(b) 介电损耗

    Figure  13.  Dielectric properties of BN ceramics after heat treatment at different temperatures: (a) Dielectric constant; (b) Dielectric loss

    图  14  PSNB、PBN及混合先驱体的红外图谱

    Figure  14.  FTIR spectra of PSNB, PBN and mixed precursor

    图  15  混合先驱体陶瓷化过程:(a)理论和实际产率;(b)裂解后陶瓷中B元素含量

    Figure  15.  Ceramization process of mixed precursor with different proportions: (a) Theoretical and actual yield; (b) B element content of ceramics derived from mixed precursor

    图  16  混合先驱体转化SiBN陶瓷XPS图谱:全谱(a)及Si (b)、B (c)、N (d)、O (e)、C (f)元素的高分辨图谱

    Figure  16.  XPS spectra of elements in mixed precursor derived SiBN ceramic: Full spectrum (a) and high-resolution spectra of Si (b), B (c), N (d), O (e) and C (f) in ceramic

    图  17  不同比例混合先驱体转化陶瓷介电性能:(a) 介电常数;(b) 介电损耗;(c) 介电常数实部随B含量变化关系

    Figure  17.  Dielectric properties of mixed precursor derived ceramics with different precursor proportions: (a) Dielectric constant; (b) Dielectric loss; (c) Relationship between real part of permittivity and B content

    图  18  不同温度热处理后不同比例混合先驱体转化陶瓷的XRD图谱

    Figure  18.  XRD patterns of mixed precursor derived ceramics with different precursor proportions after heat treatment at different temperatures

    图  19  不同温度热处理后混合先驱体转化SiBN陶瓷XPS高分辨图谱:(a) Si;(b) N;(c) B

    Figure  19.  XPS high-resolution spectra of elements in mixed precursor derived SiBN ceramics after heat treatment at different temperatures: (a) Si; (b) N; (c) B

    表  1  PSNB先驱体及在不同气氛下裂解后陶瓷(PDC)元素含量及产率

    Table  1.   Element contents and yields of PSNB and polymer derived ceramics (PDC) after pyrolysis in different atmospheres

    Element content/wt%PDC
    yield/%
    SiBNOC
    PSNB34-365-724-261-227-29
    900℃-N252.6817.9914.9014.4383.67
    900℃-NH348.912.8022.65 7.79 0.6079.13
    下载: 导出CSV

    表  2  PBN先驱体及在NH3气氛下裂解后陶瓷元素含量及产率

    Table  2.   Element content and yield of PBN and PDC after pyrolysis under NH3

    Element content/wt%PDC yield/%
    BNOC
    PBN19.64501-221.43
    800℃-NH334.4636.7023.96 4.2444.38
    下载: 导出CSV

    表  3  不同比例混合先驱体产率及裂解后陶瓷中B元素含量

    Table  3.   Yield and B element content of ceramics derived from mixed precursor with different proportions

    Sample m(PSNB)/
    m(PBN)
    Curing
    yield/%
    PDC
    yield/%
    B content/wt%
    S-SiBN 1∶0 98.65 79.13 2.80
    S-31 3∶1 91.24 65.26 9.02
    S-21 2∶1 85.68 59.38 12.13
    S-11 1∶1 83.89 62.79 15.27
    S-12 1∶2 68.65 60.94 20.05
    S-13 1∶3 65.33 58.57 21.03
    S-BN 0∶1 59.71 44.38 34.46
    Note: m(PSNB)/m(PSN)—Mass ratio of PSNB precursor to PSN precursor.
    下载: 导出CSV
  • [1] SUZDAL'TSEV E I. Radio-transparent ceramics: Yesterday, today, tomorrow[J]. Refractories and Industrial Ceramics,2015,55(5):377-390. doi: 10.1007/s11148-015-9731-6
    [2] 张大海, 黎义, 高文, 等. 高温天线罩材料研究进展[J]. 宇航材料工艺, 2001, 31(6):1-3.

    ZHANG Dahai, LI Yi, GAO Wen, et al. Development and application of high temperature radome materials[J]. Aerospace Materials & Technology,2001,31(6):1-3(in Chinese).
    [3] 张煜东, 苏勋家, 侯根良. 高温透波材料研究现状和展望[J]. 飞航导弹, 2006(3):56-58.

    ZHANG Yudong, SU Xunjia, HOU Genliang. Research status and prospect on high temperature wave transparent materials[J]. Aerodynamic Missile Journal,2006(3):56-58(in Chinese).
    [4] 崔雪峰, 李建平, 李明星, 等. 氮化物基陶瓷高温透波材料的研究进展[J]. 航空材料学报, 2020, 40(1):21-34.

    CUI Xuefeng, LI Jianping, LI Mingxing, et al. Research progress of nitride based ceramic high temperature wave transparent materials[J]. Journal of Aeronautical Materials,2020,40(1):21-34(in Chinese).
    [5] 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6):8-27.

    SUN Cong. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica,2022,43(6):8-27(in Chinese).
    [6] 李燚. 短时高温工作的透波隔热天线罩设计[J]. 无线互联科技, 2017(13):62-65.

    LI Yi. Design of the microwave transparent and heat insolated antenna that works in short-time high-tempera-ture[J]. Wireless Internet Technology,2017(13):62-65(in Chinese).
    [7] 千粉玲, 谢志鹏, 孙加林, 等. Al2O3陶瓷微波介电性能的研究与进展[J]. 陶瓷学报, 2012, 33(4):519-527.

    QIAN Fenling, XIE Zhipeng, SUN Jialin, et al. Research status on microwave dielectric properties of Al2O3ceramics[J]. Journal of Ceramics,2012,33(4):519-527(in Chinese).
    [8] 孙银宝, 张宇民, 韩杰才. 耐高温透波材料及其性能研究进展[J]. 宇航材料工艺, 2008, 38(3):11-14.

    SUN Yinbao, ZHANG Yumin, HAN Jiecai. High-tempera-ture resistant microwave-transmitting materials and their properties[J]. Aerospace Materials & Technology,2008,38(3):11-14(in Chinese).
    [9] YANG X J, LI B, ZHANG C R, et al. Fabrication and properties of porous silicon nitride wave-transparent ceramics via gel-casting and pressureless sintering[J]. Materials Science and Engineering A,2016,663:174-180. doi: 10.1016/j.msea.2016.03.116
    [10] YANG X J, LI B, LI D, et al. High-temperature properties and interface evolution of silicon nitride fiber reinforced silica matrix wave-transparent composite materials[J]. Journal of the European Ceramic Society,2019,39(2):240-248.
    [11] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society,2010,93(7):1805-1837.
    [12] 李斌. 氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D]. 长沙: 国防科学技术大学, 2007.

    LI Bin. Preparation and performance of ablation resistant, wave-transparent nitride ceramic matrix composites and radome[D]. Changsha: National University of Defense Technology, 2007(in Chinese).
    [13] TANG Y, WANG J, LI X D, et al. Polymer-derived SiBN fiber for high-temperature structural/functional applications[J]. Chemistry-A European Journal,2010,16(22):6458-6462. doi: 10.1002/chem.200902974
    [14] 黄先华, 刘勇, 张晨宇, 等. SiBN陶瓷纤维的脱碳工艺研究[J]. 合成纤维工业, 2017, 40(2):1-5.

    HUANG Xianhua, LIU Yong, ZHANG Chenyu, et al. Decarburization research of SiBN ceramic fibers[J]. China Synthetic Fiber Industry,2017,40(2):1-5(in Chinese).
    [15] MAEDA M, MAKINO T. Low dielectric constant amorphous SiBN ternary films prepared by plasma-enhanced deposition[J]. Japanese Journal of Applied Physics,1987,26(5R):660. doi: 10.1143/JJAP.26.660
    [16] BARTA J, MANELA M, FISCHER R. Si3N4 and Si2N2O for high performance radomes[J]. Materials Science and Engineering,1985,71:265-272. doi: 10.1016/0025-5416(85)90236-8
    [17] GANESH I. Novel composites of β-SiAlON and radome manufacturing technology developed at ARCI, hyderabad, for hypervelocity vehicles[J]. Bulletin of Materials Science,2017,40(4):719-735. doi: 10.1007/s12034-017-1424-y
    [18] LONG X, SHAO C W, WANG Y D. Effects of boron content on the microwave-transparent property and high-temperature stability of continuous SiBN fibers[J]. Journal of the American Ceramic Society,2020,103(8):4436-4444. doi: 10.1111/jace.17151
    [19] TAVAKOLI A H, GERSTEL P, GOLCZEWSKI J A, et al. Kinetic effect of boron on the crystallization of Si3N4 in Si-B-C-N polymer-derived ceramics[J]. Journal of Materials Research,2011,26(4):600-608. doi: 10.1557/jmr.2010.53
    [20] 李贞, 殷小玮, 成来飞, 等. 液态聚硼硅氮烷的陶瓷化过程[J]. 硅酸盐学报, 2012, 40(7):979-982.

    LI Zhen, YIN Xiaowei, CHENG Laifei, et al. Polymer-ceramic conversion of liquid polyborosilazanes[J]. Journal of the Chinese Ceramic Society,2012,40(7):979-982(in Chinese).
    [21] 国家质量技术监督局. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2000[S]. 北京: 中国标准出版社, 2000.

    State Bureau of Quality and Technical Supervision of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2000[S]. Beijing: China Standards Press, 2000(in Chinese).
    [22] GALUSEK D, RESCHKE S, RIEDEL R, et al. In-situ carbon content adjustment in polysilazane derived amorphous SiCN bulk ceramics[J]. Journal of the European Ceramic Society,1999,19(10):1911-1921. doi: 10.1016/S0955-2219(98)00288-X
    [23] YE F, ZHANG L T, YIN X W, et al. Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures[J]. Journal of the European Ceramic Society,2013,33(8):1469-1477. doi: 10.1016/j.jeurceramsoc.2013.01.006
    [24] XU Y, HU J, TAO M, et al. Study of pyrolysis mechanism of SiBCN polymer precursor[J]. Aerospace Materials & Technology,2018,48(1):44-48.
    [25] MO R, YIN X W, YE F, et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures[J]. Ceramics International,2017,43(12):8922-8931. doi: 10.1016/j.ceramint.2017.04.030
    [26] ZHANG X W, YOU J B, CHEN N F. Recent advances in synthesis and properties of cubic boron nitride films[J]. Journal of Inorganic Materials,2007,22(3):385-390.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  165
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-06-06
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回