留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基导电材料在传感检测分析中的应用研究进展

关桦楠 陈彦宇 韩博林 刘晓飞 陈宁 朱兴杰

关桦楠, 陈彦宇, 韩博林, 等. 碳基导电材料在传感检测分析中的应用研究进展[J]. 复合材料学报, 2023, 40(12): 6500-6515. doi: 10.13801/j.cnki.fhclxb.20230704.002
引用本文: 关桦楠, 陈彦宇, 韩博林, 等. 碳基导电材料在传感检测分析中的应用研究进展[J]. 复合材料学报, 2023, 40(12): 6500-6515. doi: 10.13801/j.cnki.fhclxb.20230704.002
GUAN Huanan, CHEN Yanyu, HAN Bolin, et al. Research progress in the application of carbon-based conductive materials in sensing detection and analysis[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6500-6515. doi: 10.13801/j.cnki.fhclxb.20230704.002
Citation: GUAN Huanan, CHEN Yanyu, HAN Bolin, et al. Research progress in the application of carbon-based conductive materials in sensing detection and analysis[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6500-6515. doi: 10.13801/j.cnki.fhclxb.20230704.002

碳基导电材料在传感检测分析中的应用研究进展

doi: 10.13801/j.cnki.fhclxb.20230704.002
基金项目: 国家自然科学基金 (31201376);黑龙江省自然科学基金项目(LH2022C046);中央财政支持地方高校项目(YSL036);高校学科协同创新成果建设培育项目(LJGXCG2022-086)
详细信息
    通讯作者:

    关桦楠,博士,教授,博士生导师,研究方向为食品功能材料及安全检测 E-mail: guanhuanan3@163.com

  • 中图分类号: TM242;TB332

Research progress in the application of carbon-based conductive materials in sensing detection and analysis

Funds: National Natural Science Foundation of China (31201376); Natural Science Foundation of Heilongjiang Province of China (LH2022C046); Special Funds from the Central Finance to Support the Development of Local Universities (YSL036); Construction and Cultivation Project of Collaborative Innovation Achievements of University Disciplines (LJGXCG2022-086)
  • 摘要: 碳基导电材料是指以碳原子为骨架的材料体系,具有结构多样、可调控性强和化学稳定性高等优异性能。将碳基导电材料引入传感检测分析可以改善传感器的信号强度,提高传感检测分析的稳定性。与传统材料制成的传感器相比,使用碳基导电材料制备的传感器检测分析物质具有更高的灵敏度、更低的检测限及更宽的线性范围。因此,基于碳基导电材料的检测分析技术已显现出巨大的潜力,在医学诊疗、环境监测和食品检测等领域均具有广阔的应用前景。本文介绍了以维度划分的碳基导电材料的类别及其所制备的传感器在传感检测分析中的应用,提出了碳基导电材料及其所制备的传感器在检测分析物质中存在的问题及挑战,并对未来研究的趋势进行了展望。

     

  • 图  1  镍-沸石/炭黑(CB)修饰玻碳电极(GCE)检测B族维生素流程图[49]

    Figure  1.  Nickel-zeolite/carbon black (CB) modified glassy carbon electrode (GCE) detection of B vitamins flow chart[49]

    NiZ—Ni-exchanged zeolite; NiZCB—Ni-zeolite/carbon black; LOD—Limit of detection

    图  2  基于富勒烯-C60和铜镍双金属纳米复合薄膜电化学传感器检测维生素D3概述图[54]

    Figure  2.  Overview of vitamin D3 detection based on fullerene-C60 and copper-nickel bimetallic nanocomposite film electrochemical sensor[54]

    图  3  检测多巴胺(DA)的Ag@碳量子点(CQDs)-还原氧化石墨烯(rGO)/GCE制备工艺[59]

    Figure  3.  Preparation processes of Ag@carbon quantum dots (CQD)-reduced graphene oxide (rGO)/GCE for detection of dopamine (DA)[59]

    图  4  沸石咪唑酯骨架材料-8(ZIF-8)/碳纳米纤维(CNF)/GCE电化学传感器结构及对苯二酚(HQ)、邻苯二酚(CC)和间苯二酚(RS)同时差分脉冲伏安法(DPV)响应的示意图[67]

    Figure  4.  Structure of zeolitic imida zolate framework-8 (ZIF-8)/carbon nanofiber (CNF)/GCE electrochemical sensor and schematic diagram of simultaneous differential pulse voltammetry (DPV) response of hydroquinone (HQ), catechol (CC) and resorcinol (RS)[67]

    图  5  聚苯胺(PANi)-功能化碳纳米管(F-MWCN)T工作电极的逐步制备和农药抑制酶的反应机制[72]

    Figure  5.  Step-by-step preparation of polyaniline (PANi)-functionalized carbon nanotubes (F-MWCNT) working electrodes and the reaction mechanism of pesticide inhibiting enzymes[72]

    TCl—Thiocholine; AChE—Acetylcholinesterase; ITO—Indium Tin Oxide

    图  6  激光刻写石墨烯电极电沉积金纳米(AuNP)结构智能抗体传感器检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)概述图[77]

    Figure  6.  Overview of the detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by laser writing graphene electrode electrodeposited gold nanostructure (AuNP) intelligent antibody sensor[77]

    EDC—Cysteamine hydrochloride, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; NHS—N-hydroxy succinimide; LSG—Laser-scribed graphene; Cys—Cysteamine

    图  7  三维多孔碳(3D HPC)多孔碳的制备及检测氯硝柳胺(NA)的3D HPC@壳聚糖(CTS)/GCE传感器原理图[82]

    Figure  7.  Preparation of three-dimensional hierarchical porous carbon (3D HPC) porous carbon and schematic of the 3D HPC@chitosan (CTS)/GCE sensor for the detection of niclosamide (NA)[82]

  • [1] CARDOSO A G, VILTRES H, ORTEGA G A, et al. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives[J]. Trends in Analytical Chemistry,2023,160:116965. doi: 10.1016/j.trac.2023.116965
    [2] GAO Q Y, FU J E, LI S A, et al. Applications of transistor-based biochemical sensors[J]. Biosensors,2023,13(4):469-484. doi: 10.3390/bios13040469
    [3] WELCH E C, POWELL J M, CLEVINGER T B, et al. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials[J]. Advanced Functional Materials,2021,31(44):2104126. doi: 10.1002/adfm.202104126
    [4] KURUP C P, MOHD-NAIM N F, AHMED M U. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors[J]. Critical Reviews in Biotechnology,2022,42(5):794-812. doi: 10.1080/07388551.2021.1960792
    [5] WASILEWSKI T, NEUBAUER D, KAMYSZ W, et al. Recent progress in the development of peptide-based gas biosensors for environmental monitoring[J]. Case Studies in Chemical and Environmental Engineering,2022,5:100197. doi: 10.1016/j.cscee.2022.100197
    [6] WU W X, WANG L, YANG Y, et al. Optical flexible biosensors: From detection principles to biomedical applications[J]. Biosensors and Bioelectronics,2022,210:114328. doi: 10.1016/j.bios.2022.114328
    [7] KUMAR S, SINGH R. Recent optical sensing technologies for the detection of various biomolecules: Review[J]. Optics & Laser Technology,2021,134:106620.
    [8] ALI M Y, ALAM A U, HOWLADER M M R. Fabrication of highly sensitive Bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin[J]. Sensors and Actuators B: Chemical,2020,320:128319. doi: 10.1016/j.snb.2020.128319
    [9] KHAND N H, SOLANGI A R, AMEEN S, et al. A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE[J]. Journal of Food Measurement and Characterization,2021,15(4):3720-3730. doi: 10.1007/s11694-021-00956-0
    [10] KARIMI-MALEH H, BEITOLLAHI H, SENTHIL KUMAR P, et al. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection[J]. Food and Chemical Toxicology,2022,164:112961. doi: 10.1016/j.fct.2022.112961
    [11] YAP S H K, CHAN K K, TJIN S C, et al. Carbon allotrope-based optical fibers for environmental and biological sensing: A review[J]. Sensors,2020,20(7):2046-2088. doi: 10.3390/s20072046
    [12] ISLAM M S, SHUDO Y, HAYAMI S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect[J]. Bulletin of the Chemical Society of Japan,2022,95(1):1-25. doi: 10.1246/bcsj.20210297
    [13] FAN Y R, FOWLER G D, ZHAO M. The past, present and future of carbon black as a rubber reinforcing filler-A review[J]. Journal of Cleaner Production,2020,247:119115. doi: 10.1016/j.jclepro.2019.119115
    [14] ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials,2021,36:147-170. doi: 10.1016/j.ensm.2020.12.027
    [15] SOROKIN P B, YAKOBSON B I. Two-dimensional diamond-diamane: Current state and further prospects[J]. Nano Letters,2021,21(13):5475-5484. doi: 10.1021/acs.nanolett.1c01557
    [16] LI X, LIU T, LIN P, et al. A review on mechanisms and recent developments of nanomaterials based carbon fiber reinforced composites for enhanced interface performance[J]. Materialwissenschaft und Werkstofftechnik,2023,54(1):98-108. doi: 10.1002/mawe.202200072
    [17] WANG Y, CHEN J, IHARA H, et al. Preparation of porous carbon nanomaterials and their application in sample preparation: A review[J]. Trends in Analytical Chemistry,2021,143:116421. doi: 10.1016/j.trac.2021.116421
    [18] RATHINAVEL S, PRIYADHARSHINI K, PANDA D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering:B,2021,268:115095. doi: 10.1016/j.mseb.2021.115095
    [19] TIWARI S K, SAHOO S, WANG N N, et al. Graphene research and their outputs: status and prospect[J]. Journal of Science: Advanced Materials and Devices,2020,5(1):10-29. doi: 10.1016/j.jsamd.2020.01.006
    [20] WU N N, HU Q, WEI R B, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects[J]. Carbon,2021,176:88-105. doi: 10.1016/j.carbon.2021.01.124
    [21] WANG Y Z, YANG P J, ZHENG L X, et al. Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review[J]. Energy Storage Materials,2020,26:349-370. doi: 10.1016/j.ensm.2019.11.006
    [22] KIRCHNER E M, HIRSCH T. Recent developments in carbon-based two-dimensional materials: Synthesis and modification aspects for electrochemical sensors[J]. Microchimica Acta,2020,187(8):1-21.
    [23] YIN F F, YUE W J, LI Y, et al. Carbon-based nanomaterials for the detection of volatile organic compounds: A review[J]. Carbon,2021,180:274-297. doi: 10.1016/j.carbon.2021.04.080
    [24] LI S M, XIAO X L, HU J Y, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring[J]. ACS Applied Electronic Materials,2020,2(8):2282-2300. doi: 10.1021/acsaelm.0c00292
    [25] KILLEDAR L, ILAGER D, MALODE S J, et al. Fast and facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor[J]. Materials Chemistry and Physics,2022,285:126131. doi: 10.1016/j.matchemphys.2022.126131
    [26] ERDEM Ö, DERIN E, ZEIBI SHIREJINI S, et al. Carbon-based nanomaterials and sensing tools for wearable health monitoring devices[J]. Advanced Materials Technologies,2022,7(3):2100572. doi: 10.1002/admt.202100572
    [27] WEI B, WEI X F, WANG M Q, et al. Ultra-broadband microwave absorption of honeycomb-like three-dimensional carbon foams embedded with zero-dimensional magnetic quantum dots[J]. Journal of Alloys and Compounds,2023,939:168781. doi: 10.1016/j.jallcom.2023.168781
    [28] SHAO X, YAN C R, WANG C, et al. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation[J]. Nanoscale Advances,2023,5(1):46-80. doi: 10.1039/D2NA00625A
    [29] RATLAM C, PHANICHPHANT S, SRIWICHAI S. Development of dopamine biosensor based on polyaniline/carbon quantum dots composite[J]. Journal of Polymer Research,2020,27(7):183-195. doi: 10.1007/s10965-020-02158-6
    [30] ZHU Y, HUAI S S, JIAO J L, et al. Fullerene and platinum composite-based electrochemical sensor for the selective determination of catechol and hydroquinone[J]. Journal of Electroanalytical Chemistry,2020,878:114726. doi: 10.1016/j.jelechem.2020.114726
    [31] LI Y M, ZHONG L S, ZHANG L L, et al. Research advances on the adverse effects of nanomaterials in a model organism, Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry,2021,40(9):2406-2424. doi: 10.1002/etc.5133
    [32] ANIL KUMAR Y, KOYYADA G, RAMACHANDRAN T, et al. Carbon materials as a conductive skeleton for supercapacitor electrode applications: A review[J]. Nanomaterials,2023,13(6):1049-1084. doi: 10.3390/nano13061049
    [33] BABY J N, SRIRAM B, WANG S F, et al. Integration of samarium vanadate/carbon nanofiber through synergy: An electrochemical tool for sulfadiazine analysis[J]. Journal of Hazardous Materials,2021,408:124940. doi: 10.1016/j.jhazmat.2020.124940
    [34] MEHMANDOUST M, ERK N, ALIZADEH M, et al. Voltammetric carbon nanotubes based sensor for determination of tryptophan in the milk sample[J]. Journal of Food Measurement and Characterization,2021,15(6):5288-5295. doi: 10.1007/s11694-021-01100-8
    [35] WANG B, RUAN T T, CHEN Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials,2020,24:22-51. doi: 10.1016/j.ensm.2019.08.004
    [36] YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage,2023,61:106716. doi: 10.1016/j.est.2023.106716
    [37] MISHRA S, KUMAR R. Graphene nanoflakes: foundation for improving solid state electrochemistry based electrochromic devices[J]. Solar Energy Materials and Solar Cells,2019,200:110041. doi: 10.1016/j.solmat.2019.110041
    [38] CHENG Y, ZHANG Y F, MENG C G. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors[J]. ACS Applied Energy Materials,2019,2(5):3830-3839. doi: 10.1021/acsaem.9b00511
    [39] ZHAO Y Y, ZHANG Y L, WANG Y, et al. Versatile zero-to three-dimensional carbon for electrochemical energy storage[J]. Carbon Energy,2021,3(6):895-915. doi: 10.1002/cey2.137
    [40] NGUYEN T D, NGUYEN M T N, LEE J S. Carbon-based materials and their applications in sensing by electrochemical voltammetry[J]. Inorganics,2023,11(2):81-103. doi: 10.3390/inorganics11020081
    [41] LIU Z D, SHEN D Y, YU J H, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC Advances,2016,6(27):22364-22369. doi: 10.1039/C5RA27223H
    [42] ZHENG Y D, WANG R, DONG X Y, et al. High strength conductive polyamide 6 nanocomposites reinforced by prebuilt three-dimensional carbon nanotube networks[J]. ACS Applied Materials & Interfaces,2018,10(33):28103-28111.
    [43] FERREIRA L M C, SILVA P S, AUGUSTO K K L, et al. Using nanostructured carbon black-based electrochemical (bio)sensors for pharmaceutical and biomedical analyses: A comprehensive review[J]. Journal of Pharmaceutical and Biomedical Analysis,2022,221:115032. doi: 10.1016/j.jpba.2022.115032
    [44] OZER T, HENRY C S. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode[J]. Electrochimica Acta,2022,404:139762. doi: 10.1016/j.electacta.2021.139762
    [45] ARDUINI F, CINTI S, MAZZARACCHIO V, et al. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design[J]. Biosensors and Bioelectronics,2020,156:112033. doi: 10.1016/j.bios.2020.112033
    [46] TACHIBANA S, WANG Y F, SEKINE T, et al. A printed flexible humidity sensor with high sensitivity and fast response using a cellulose nanofiber/carbon black composite[J]. ACS Applied Materials & Interfaces,2022,14(4):5721-5728.
    [47] BAO Q W, LI G, YANG Z C, et al. Electrochemical detection of tyrosine with casting electrode with carbon black and graphene oxide co-doped[J]. Microchemical Journal,2023,185:108238. doi: 10.1016/j.microc.2022.108238
    [48] RAHMAN M M, ALAM M M, ASIRI A M. Carbon black co-adsorbed ZnO nanocomposites for selective benzaldehyde sensor development by electrochemical approach for environmental safety[J]. Journal of Industrial and Engineering Chemistry,2018,65:300-308. doi: 10.1016/j.jiec.2018.04.041
    [49] PORADA R, FENDRYCH K, KOCHANA J, et al. Simple and reliable determination of B group vitamins in various food matrices with the use of the voltammetric sensor based on Ni-zeolite/carbon black nanocomposite[J]. Food Control,2022,142:109243. doi: 10.1016/j.foodcont.2022.109243
    [50] KUBENDHIRAN S, SAKTHIVEL R, CHEN S M, et al. Innovative strategy based on a novel carban-black-β-cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental pollutant 4-nitrophenol [J]. Analytical Chemistry,2018,90(10):6283-6291. doi: 10.1021/acs.analchem.8b00989
    [51] GIANNOPOULOS G I, GEORGANTZINOS S K, GHAVANLOO E. Exploring the energetics and structural properties of a new carbon allotrope family named α-fullerynes[J]. Diamond and Related Materials,2022,129:109375. doi: 10.1016/j.diamond.2022.109375
    [52] PAN Y, LIU X J, ZHANG W, et al. Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications[J]. Applied Catalysis B: Environmental,2020,265:118579. doi: 10.1016/j.apcatb.2019.118579
    [53] YOU H, MU Z D, ZHAO M, et al. Functional fullerene-molybdenum disulfide fabricated electrochemical DNA biosensor for Sul1 detection using enzyme-assisted target recycling and a new signal marker for cascade amplification[J]. Sensors and Actuators B: Chemical,2020,305:127483. doi: 10.1016/j.snb.2019.127483
    [54] ANUSHA T, BHAVANI K S, KUMAR J V S, et al. Designing and fabrication of electrochemical nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples[J]. Diamond and Related Materials,2020,104:107761. doi: 10.1016/j.diamond.2020.107761
    [55] TAOURI L, BOUROUINA M, BOUROUINA-BACHA S, et al. Fullerene-MWCNT nanostructured-based electrochemical sensor for the detection of Vanillin as food additive[J]. Journal of Food Composition and Analysis,2021,100:103811. doi: 10.1016/j.jfca.2021.103811
    [56] POURMADADI M, RAHMANI E, RAJABZADEH-KHOSROSHAHI M, et al. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review[J]. Journal of Drug Delivery Science and Technology,2023,80:104156. doi: 10.1016/j.jddst.2023.104156
    [57] ABBAS M W, SOOMRO R A, KALWAR N H, et al. Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid[J]. Microchemical Journal,2019,146:517-524. doi: 10.1016/j.microc.2019.01.034
    [58] REZAEI B, TAJADDODI A, ENSAFI A A. An innovative highly sensitive electrochemical sensor based on modified electrode with carbon quantum dots and multiwall carbon nanotubes for determination of methadone hydrochloride in real samples[J]. Analytical Methods,2020,12(43):5210-5218. doi: 10.1039/D0AY01374A
    [59] HAN G D, CAI J H, LIU C F, et al. Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection[J]. Applied Surface Science,2021,541:148566. doi: 10.1016/j.apsusc.2020.148566
    [60] YADAV D, AMINI F, EHRMANN A. Recent advances in carbon nanofibers and their applications-A review[J]. European Polymer Journal,2020,138:109963. doi: 10.1016/j.eurpolymj.2020.109963
    [61] KOUSAR A, PANDE I, PASCUAL L F, et al. Modulating the geometry of the carbon nanofiber electrodes provides control over dopamine sensor performance[J]. Analytical Chemistry,2023,95(5):2983-2991. doi: 10.1021/acs.analchem.2c04843
    [62] LEE J H, CHEN H M, KIM E, et al. Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature[J]. Materials Horizons,2021,8(5):1488-1498. doi: 10.1039/D1MH00018G
    [63] RANI S D, RAMACHANDRAN R, SHEET S, et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors[J]. Sensors and Actuators B: Chemical,2020,312:127886. doi: 10.1016/j.snb.2020.127886
    [64] SASAL A, TYSZCZUK-ROTKO K, CHOJECKI M, et al. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor-experimental and theoretical studies[J]. Electroanalysis,2020,32(7):1618-1628. doi: 10.1002/elan.202000039
    [65] GUO Q H, LIU L J, WU T T, et al. Flexible and conductive titanium carbide-carbon nanofibers for high-performance glucose biosensing[J]. Electrochimica Acta,2018,281:517-524. doi: 10.1016/j.electacta.2018.05.181
    [66] XIE H, LUO G L, NIU Y Y, et al. Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor[J]. Materials Science and Engineering: C,2020,107:110209. doi: 10.1016/j.msec.2019.110209
    [67] YANG S Y, YANG M, YAO X, et al. A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers[J]. Sensors and Actuators B: Chemical,2020,320:128294-128328. doi: 10.1016/j.snb.2020.128294
    [68] NORIZAN M N, MOKLIS M H, DEMON S Z N, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors[J]. RSC Advances,2020,10(71):43704-43732. doi: 10.1039/D0RA09438B
    [69] PINALS R L, LEDESMA F, YANG D, et al. Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors[J]. Nano Letters,2021,21(5):2272-2280. doi: 10.1021/acs.nanolett.1c00118
    [70] ZHANG X Z, MADDIPATLA D, BOSE A K, et al. Printed carbon nanotubes-based flexible resistive humidity sensor[J]. IEEE Sensors Journal,2020,20(21):12592-12601. doi: 10.1109/JSEN.2020.3002951
    [71] CHENG J Y, WANG X D, NIE T Y, et al. A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids[J]. Analytical and Bioanalytical Chemistry,2020,412(11):2433-2441. doi: 10.1007/s00216-020-02455-5
    [72] NAGABOOSHANAM S, JOHN A T, WADHWA S, et al. Electro-deposited nano-webbed structures based on polyaniline/multi walled carbon nanotubes for enzymatic detection of organophosphates[J]. Food Chemistry,2020,323:126784. doi: 10.1016/j.foodchem.2020.126784
    [73] MASIKINI M, GHICA M E, BAKER P G L, et al. Electrochemical sensor based on multi-walled carbon nanotube/gold nanoparticle modified glassy carbon electrode for detection of estradiol in environmental samples[J]. Electroanalysis,2019,31(10):1925-1933. doi: 10.1002/elan.201900190
    [74] ARSHAD F, NABI F, IQBAL S, et al. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers[J]. Colloids and Surfaces B: Biointerfaces,2022,212:112356. doi: 10.1016/j.colsurfb.2022.112356
    [75] EL BARGHOUTI M, AKJOUJ A, MIR A. MoS2-graphene hybrid nanostructures enhanced localized surface plasmon resonance biosensors[J]. Optics & Laser Technology,2020,130:106306.
    [76] TAHERNEJAD-JAVAZMI F, SHABANI-NOOSHABADI M, KARIMI-MALEH H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor[J]. Composites Part B: Engineering,2019,172:666-670. doi: 10.1016/j.compositesb.2019.05.065
    [77] BEDUK T, BEDUK D, DE OLIVEIRA FILHO J I, et al. Rapid point-of-care COVID-19 diagnosis with a gold-nanoarchitecture-assisted laser-scribed graphene biosensor[J]. Analytical Chemistry,2021,93(24):8585-8594. doi: 10.1021/acs.analchem.1c01444
    [78] ZHU Y Y, WU J, HAN L J, et al. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides[J]. Analytical Chemistry,2020,92(11):7444-7452. doi: 10.1021/acs.analchem.9b05110
    [79] 关磊. 三维碳纳米材料的研究进展[J]. 功能材料与器件学报, 2012, 18(4):267-271. doi: 10.3969/j.issn.1007-4252.2012.04.001

    GUAN Lei. Progress in research of three-dimensional carbon nanomaterials[J]. Journal of Functional Materials and Devices,2012,18(4):267-271(in Chinese). doi: 10.3969/j.issn.1007-4252.2012.04.001
    [80] LUO G L, ZOU R Y, NIU Y Y, et al. Fabrication of ZIF-67@three-dimensional reduced graphene oxide aerogel nanocomposites and their electrochemical applications for rutin detection[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,190:113505. doi: 10.1016/j.jpba.2020.113505
    [81] ZHAI Z F, LENG B, YANG N J, et al. Rational construction of 3D-networked carbon nanowalls/diamond supporting CuO architecture for high-performance electrochemical biosensors[J]. Small,2019,15(48):1901527. doi: 10.1002/smll.201901527
    [82] LI F, LIU R Q, DUBOVYK V, et al. Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide[J]. Food Chemistry,2022,366:130563. doi: 10.1016/j.foodchem.2021.130563
  • 加载中
图(7)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  161
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-06-07
  • 录用日期:  2023-06-24
  • 网络出版日期:  2023-07-05
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回