留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兼具应变传感和电磁屏蔽双功能的柔性水凝胶基聚合物的研究进展

胡煦煦 魏子健 谢兆新 张冉 战艳虎

胡煦煦, 魏子健, 谢兆新, 等. 兼具应变传感和电磁屏蔽双功能的柔性水凝胶基聚合物的研究进展[J]. 复合材料学报, 2023, 40(12): 6554-6571. doi: 10.13801/j.cnki.fhclxb.20230616.005
引用本文: 胡煦煦, 魏子健, 谢兆新, 等. 兼具应变传感和电磁屏蔽双功能的柔性水凝胶基聚合物的研究进展[J]. 复合材料学报, 2023, 40(12): 6554-6571. doi: 10.13801/j.cnki.fhclxb.20230616.005
HU Xuxu, WEI Zijian, XIE Zhaoxin, et al. Advances in flexible hydrogel-based polymers with dual functions of strain sensing and electromagnetic shielding[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6554-6571. doi: 10.13801/j.cnki.fhclxb.20230616.005
Citation: HU Xuxu, WEI Zijian, XIE Zhaoxin, et al. Advances in flexible hydrogel-based polymers with dual functions of strain sensing and electromagnetic shielding[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6554-6571. doi: 10.13801/j.cnki.fhclxb.20230616.005

兼具应变传感和电磁屏蔽双功能的柔性水凝胶基聚合物的研究进展

doi: 10.13801/j.cnki.fhclxb.20230616.005
基金项目: 国家自然科学基金项目(52103054;52177020)
详细信息
    通讯作者:

    张 冉,博士,讲师,硕士生导师,研究方向为软物质界面材料的制备及生物润滑行为研究 E-mail: zhangran1@lcu.edu.cn

    战艳虎,博士,副教授,硕士生导师,研究方向为功能高分子 E-mail: zhanyanhu@lcu.edu.cn

  • 中图分类号: TB332

Advances in flexible hydrogel-based polymers with dual functions of strain sensing and electromagnetic shielding

Funds: National Natural Science Foundation of China (52103054; 52177020)
  • 摘要: 水凝胶基柔性聚合物材料,因其优异的传感性能、良好的延展性,广泛应用于智能可穿戴应变传感器领域。然而,传感器件在使用过程中,会发生信号干扰,影响设备的正常运转。因此,开发兼具有应变传感和电磁屏蔽双功能的水凝胶材料具有重要意义。本文介绍了水凝胶材料的应变传感及电磁屏蔽机制,分析了微观结构、溶剂种类、导电填料种类和导电网络结构对双功能水凝胶材料性能的影响,并根据目前双功能水凝胶的研究现状,提出了该领域的发展方向和应用前景。

     

  • 图  1  水凝胶材料的应变传感机制

    Figure  1.  Strain sensing mechanism of hydrogel materials

    图  2  水凝胶的电磁屏蔽机制

    Figure  2.  Electromagnetic shielding mechanism of hydrogel

    EMWs—Electrical megawatts

    图  3  兼具应变传感和电磁屏蔽双功能的聚合物基水凝胶设计图

    Figure  3.  Design of polymer-based hydrogel with dual function of strain sensing and electromagnetic shielding

    图  4  (a) 还原氧化石墨烯(RGO)复合水凝胶材料的合成示意图;(b) RGO复合水凝胶材料的自愈合能力示意图;(c) 该复合水凝胶的电磁干扰(EMI)屏蔽机制;(d) 不同含量的RGO的EMI SET曲线[29]

    Figure  4.  (a) Schematic diagram of the synthesis of the reduced graphene oxide (RGO) composite hydrogel material; (b) Schematic diagram of the self-healing ability of the RGO composite hydrogel material; (c) Electromagnetic interference (EMI) shielding mechanism of this composite hydrogel; (d) EMI SET curves for different levels of RGO[29]

    PAA—Polyacrylic acid; ACC— Amorphous calcium carbonate ; CS—Chitosan

    图  5  (a) 聚乙烯醇(PVA)、聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)和5%Fe3O4/PEDOT:PPS/PVA多功能水凝胶的应力-应变曲线;(b) 不同成分水凝胶的EMI屏蔽效果;(c) 不同应变下的归一化电阻变化;(d) 可拉伸应变传感器的响应和恢复时间[18]

    Figure  5.  (a) Stress-strain curves of polyvinyl alcohol (PVA), poly(3, 4-ethylenedioxythiophene)-poly(styrene sulfonic acid)(PEDOT:PSS) and 5%Fe3O4/PEDOT:PPS/PVA multifunctional hydrogels; (b) EMI shielding effect of hydrogels with different compositions; (c) Normalized resistance variation at different strains; (d) Response and recovery time of stretchable strain sensors[18]

    R—Relative resistance change; R0—Initial resistance value

    图  6  (a) Mxene 有机水凝胶材料的结构示意图;(b) Mxene 有机水凝胶材料的应变传感示意图;(c) Mxene 有机水凝胶的电磁屏蔽性能[34]

    Figure  6.  (a) Schematic structure of MXene organohydrogel material; (b) Schematic strain sensing of MXene organohydrogel material; (c) Electromagnetic shielding property of MXene organohydrogel[34]

    Gly—Glycerol; PAAM—Polyacrylamide; AAM—Acrylamide

    图  7  (a) MXene基水凝胶的制备示意图;(b) 水凝胶和气凝胶之间可逆转化示意图;(c) 具有各种含水量的MXene基水凝胶的EMI SE值;(d) 不同拉伸应变下MXene基水凝胶的相对电阻变化[53]

    Figure  7.  (a) Schematic diagram of the preparation of MXene based hydrogels; (b) Schematic diagram of the reversible transformation between hydrogels and aerogels; (c) EMI SE values of MXene based hydrogels with various water contents; (d) Relative resistance change of MXene based hydrogels under different tensile strains[53]

    MAX—Ternary layered compounds Ti3AlC2

    图  8  (a) PEDOT:PSS厚膜和不同的水凝胶形成图示; (b) 与其他工作相比, EMIM-TFSI和二甲基亚砜(DMSO)掺杂水凝胶的EMI屏蔽效率;(c) 通过PEDOT:PSS水凝胶/EMIM-TFSI应变传感器实时相对电阻变化监测人体手指弯曲活动[42]

    Figure  8.  (a) Illustration of PEDOT:PSS thick film and different hydrogel formation; (b) EMI shielding efficiency of EMIM-TFSI and dimethylsulfoxide (DMSO) doped hydrogel compared to other work; (c) Monitoring of human body by PEDOT:PSS hydrogel/EMIM-TFSI strain sensor real time relative resistance change finger flexion activity[42]

    IL—ionic liquid

    图  9  (a) M-SA/AKP/PAM梯度水凝胶结构的形成;(b) M-SA/AKP/PAM水凝胶材料的传感性能;(c) 不同离子水凝胶的应力应变曲线;(d) 水凝胶材料的电阻值比较[38]

    Figure  9.  (a) Formation of gradient M-SA/AKP/PAM hydrogel structure; (b) Sensing properties of M-SA/AKP/PAM hydrogel ; (c) Stress-strain curves of different ionic hydrogels; (d) Comparison of the magnitude of resistance values of hydrogel materials[38]

    SA—Sodium alginate; AKP—Krill protein; PAM—Polyacrylamide; R—Resistance

    图  10  (a) 离子-纤维素/BT水凝胶的结构图;(b) 离子-纤维素/BT水凝胶的耐冻机制示意图;(c) 离子在带有纤维素纤维的分层BT纳米板上移动;(d)离子-纤维素/BT水凝胶和离子-纤维素水凝胶的拉伸变形的应力-应变曲线[65]

    Figure  10.  (a) Structural diagram of the Ion-CB hydrogel; (b) Schematic diagram of the freezing tolerance mechanism of the Ion-CB hydrogel; (c) Ion movement on a layered BT nanoplate with cellulose fibers; (d) Stress-strain curve of the Ion-CB hydrogel and Ion-C hydrogel for tensile deformation[65]

    图  11  (a) 多层复合水凝胶基电子皮肤的应变传感示意图;(b) 多层复合水凝胶基电子皮肤的灵敏度和EMI标准;(c)多层复合水凝胶基 电子皮肤在12000次压力循环前后的EMI SE;(d) 抗电磁辐射柔性电子皮肤的制备[8]

    Figure  11.  (a) Schematic of strain sensing in multilayer composite hydrogel-based E-skin ; (b) Sensitivity and EMI criteria of multilayer composite hydrogel-based E-skin; (c) EMI SE of multilayer composite hydrogel-based E-skin before and after 12 000 stress cycles; (d) Preparation process of anti-electromagnetic radiation flexible E-skin[8]

    TOCN—Nano-crystalline cellulose; S1— Sensitivity in the pressure range of 0–500 Pa; S2—Sensitivity in the pressure range of 500–1500 Pa; AgNWs—silver nanowires; ΔI/I0—Ratio of real-time current change to initial current

    图  12  (a) 不同MXene含量的M0.9F3CP-Gly和MF3CP-Gly/P有机水凝胶的电磁屏蔽性能;(b) 有机水凝胶的线性响应特征;(c) 小应变下循环加载-卸载测试下的相对电阻变化;(d) 具有不同MXene含量的有机水凝胶应力-应变曲线[17]

    Figure  12.  (a) The electromagnetic shielding effectiveness of the M0.9F3CP-Gly and MF3CP-Gly/P organohydrogels with different MXene contents; (b) Linear response characteristics of organic hydrogels; (c) Relative resistance changes under cyclic loading-unloading tests at small strains; (d) Stress-strain curves of organic hydrogels with different MXene contents[17]

    图  13  (a) 离子导电水凝胶的制备示意图;(b) LiCl基水凝胶良好的保水性与抗冻性示意图[17];(c) PPZE水凝胶的制备示意图;(d) 不同温度下PPZE水凝胶的力学和电学性能[82]

    Figure  13.  (a) Schematic of the preparation of ion-conductive hydrogels; (b) Schematic of the good water retention and frost resistance of LiCl-based hydrogels [17]; (c) Schematic of the preparation of PPZE hydrogels; (d) Mechanical and electrical properties of PPZE hydrogels at different temperatures [82]

    PPZE—PVA/PAM/Zn/EG; AM— Acrylamide; RT—Room temperature; EG—Ethylene glycol

  • [1] ZHANG J W, ZHANG Q, LIU X, et al. Flexible and wearable strain sensors based on conductive hydrogels[J]. Journal of Polymer Science,2022,60(18):2663-2678. doi: 10.1002/pol.20210935
    [2] TAVASSOLIZADEH A, ROTT K, MEIER T, et al. Tunnel magnetoresistance sensors with magnetostrictive electrodes: Strain sensors[J]. Sensors,2016,16(11):1902. doi: 10.3390/s16111902
    [3] LI W J, GUAN Q W, LI M, et al. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications[J]. Progress in Polymer Science, 2023, 140: 101665.
    [4] GUAN X, WANG Z Y, ZHAO W Y, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture[J]. ACS Applied Materials & Interfaces,2020,12(23):26137-26144.
    [5] SUN X, YAO F L, LI J J. Nanocomposite hydrogel-based strain and pressure sensors: a review[J]. Journal of Materials Chemistry A,2020,8(36):18605-18623. doi: 10.1039/D0TA06965E
    [6] RAHMANI P, SHOJAEI A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors[J]. Advances in Colloid and Interface Science,2021,298:102553. doi: 10.1016/j.cis.2021.102553
    [7] SARKAR B, LI X D, QUENNEVILLE E, et al. Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2021,9(46):16558-16565. doi: 10.1039/D1TC04008A
    [8] XU H Y, LIU D N, SONG Y H, et al. Ultra-sensitive and flexible electronic skin from nanocellulose/AgNWs hydrogel films with highly transparent, antibacterial and electromagnetic shielding properties [J]. Composites Science and Technology, 2022, 228: 109679.
    [9] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48(3):788-796. doi: 10.1016/j.carbon.2009.10.028
    [10] WU C J, KIM T, LEE S B, et al. An overview of composite structural engineering for stretchable strain sensors[J]. Composites Science and Technology, 2022, 229: 109714.
    [11] SONG S W, LI H T, LIU P W, et al. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding[J]. Carbohydrate Polymers,2022,287:119347. doi: 10.1016/j.carbpol.2022.119347
    [12] LIU Y F, LI Y Q, HUANG P, et al. On the evaluation of the sensitivity coefficient of strain sensors[J]. Advanced Electronic Materials,2018,4(12):1800353. doi: 10.1002/aelm.201800353
    [13] 谢倩, 郝雪卉, 赵利民, 等. 磁控溅射镀镍修饰聚乙烯醇纤维膜的电磁屏蔽性能 [J]. 聊城大学学报(自然科学版), 2023, 36(3): 50-55,63.

    XIE Qian, HAO Xuehui, ZHAO Limin, et al. Electromagnetic interference shielding properties of poly(vinyl alcohol)fiber film decorated by nickel through magnetron sputtering[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(3): 50-55,63 (in Chinese).
    [14] WANASINGHE D, ASLANI F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes [J]. Composites Part B: Engineering, 2019, 176: 107207.
    [15] ZHAO B, ZHANG X, DENG J, et al. Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications[J]. RSC Advances,2020,10(3):1535-1543. doi: 10.1039/C9RA08679J
    [16] ZHANG Y M, HOU X. Liquid-based materials[J]. National Science Open,2022,1(3):20220035. doi: 10.1360/nso/20220035
    [17] HE Y Y, CHEN J X, QIAN Y Y, et al. Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing[J]. Carbohydrate Polymers,2022,298:120132. doi: 10.1016/j.carbpol.2022.120132
    [18] HAO M M, WANG Y F, LI L H, et al. Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties[J]. Soft Matter,2021,17(40):9057-9065. doi: 10.1039/D1SM01027A
    [19] SUI X J, GUO H S, CAI C C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities[J]. Chemi-cal Engineering Journal,2021,419:129478. doi: 10.1016/j.cej.2021.129478
    [20] WANG Y Q, CHEN P C, ZHOU X J, et al. Highly sensitive zwitterionic hydrogel sensor for motion and pulse detection with water retention, adhesive, antifreezing, and self-healing properties[J]. ACS Applied Materials & Interfaces,2022,14(41):47100-47112.
    [21] HU N, KARUBE Y, ARAI M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor[J]. Carbon,2010,48(3):680-687. doi: 10.1016/j.carbon.2009.10.012
    [22] PALACIOS J A, GANESAN R. Dynamic response of Carbon-Nanotube-Reinforced-Polymer materials based on multiscale finite element analysis[J]. Composites Part B: Engineering,2019,166:497-508. doi: 10.1016/j.compositesb.2019.02.039
    [23] XIA X D, ZHAO S J, FANG C, et al. Modeling the strain-dependent electrical resistance and strain sensitivity factor of CNT-polymer nanocomposites[J]. Mathematical Methods in the Applied Sciences, 2020, 45(16): 15.
    [24] ERDEM AKGÜN D. Effecting factors on electrical resistance of conductive paths[J]. Journal of Industrial Textiles,2022,51(2):3004S-3013S. doi: 10.1177/15280837221077704
    [25] PENG M Y, QIN F X. Clarification of basic concepts for electromagnetic interference shielding effectiveness[J]. Journal of Applied Physics,2021,130(22):225108. doi: 10.1063/5.0075019
    [26] YANG W X, SHAO B W, LIU T Y, et al. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2018,10(9):8245-8257.
    [27] MA L, HAMIDINEJAD M, WEI L F, et al. Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization[J]. Materials Today Physics,2023,30:100940. doi: 10.1016/j.mtphys.2022.100940
    [28] QIN M, ZHANG L M, WU H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science,2022,9(10):2105553. doi: 10.1002/advs.202105553
    [29] LAI D G, CHEN X X, WANG G, et al. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance[J]. Carbon,2022,188:513-522. doi: 10.1016/j.carbon.2021.12.047
    [30] SONG W L, CAO M S, HOU Z L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band[J]. Applied Physics Letters,2009,94(23):233110. doi: 10.1063/1.3152764
    [31] HUANG X, WANG L B, SHEN Z H, et al. Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding[J]. Chemical Engineering Journal,2022,446:137136. doi: 10.1016/j.cej.2022.137136
    [32] YANG Y F, HAN M R, LIU W, et al. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding[J]. Nano Research,2022,15(10):9614-9630. doi: 10.1007/s12274-022-4817-1
    [33] SONG W L, ZHANG Y J, ZHANG K L, et al. Ionic conductive gels for optically manipulatable microwave stealth structures[J]. Advanced Science,2020,7(2):1902162. doi: 10.1002/advs.201902162
    [34] YU Y H, YI P, XU W B, et al. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances[J]. Nano-Micro Letters,2022,14(1):77.
    [35] ZHANG Y L, GU J W. A perspective for developing polymer-based electromagnetic interference shielding composites[J]. Nano-Micro Letters,2022,14(1):89.
    [36] THONIYOT P, TAN M J, KARIM A A, et al. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials[J]. Advanced Science,2015,2(1-2):1400010. doi: 10.1002/advs.201400010
    [37] WANG L R, XU T L, ZHANG X J. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. Trends in Analytical Chemistry,2021,134:116130. doi: 10.1016/j.trac.2020.116130
    [38] SONG X C, GUO J, LIU Y F, et al. Preparation and characterization of multi-network hydrogels based on sodium alginate/krill protein/polyacrylamide–Strength, shape memory, conductivity and biocompatibility[J]. International Journal of Biological Macromolecules,2022,207:140-151. doi: 10.1016/j.ijbiomac.2022.03.015
    [39] HU W K, WANG Z J, XIAO Y, et al. Advances in crosslinking strategies of biomedical hydrogels[J]. Biomaterials Science,2019,7(3):843-855. doi: 10.1039/C8BM01246F
    [40] SEPULVEDA-MEDINA P I, WANG C, LI R, et al. Influence of the nature of aliphatic hydrophobic physical crosslinks on water crystallization in copolymer hydrogels[J]. Journal of Physical Chemistry B,2022,126(29):5544-5554. doi: 10.1021/acs.jpcb.2c02438
    [41] FU W X, ZHAO B. Thermoreversible physically crosslinked hydrogels from UCST-type thermosensitive ABA linear triblock copolymers[J]. Polymer Chemistry,2016,7(45):6980-6991. doi: 10.1039/C6PY01517D
    [42] WANG J, LI Q, LI K C, et al. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding[J]. Advanced Materials,2022,34(12):2109904. doi: 10.1002/adma.202109904
    [43] ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science,2020,7(15):2000979. doi: 10.1002/advs.202000979
    [44] YANG C H, WANG M X, HAIDER H, et al. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations[J]. ACS Applied Materials & Interfaces,2013,5(21):10418-10422.
    [45] MA G S, XIA L, YANG H, et al. Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption[J]. Chemical Engineering Journal,2021,418:129429. doi: 10.1016/j.cej.2021.129429
    [46] LAN D, GAO Z G, ZHAO Z H, et al. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption[J]. Chemical Engineering Journal,2021,408:127313. doi: 10.1016/j.cej.2020.127313
    [47] XU D M, YANG Y F, LYU L F, et al. One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers[J]. Chemical Engineering Journal,2021,410:128295. doi: 10.1016/j.cej.2020.128295
    [48] ERCEG T, CAKIĆ S, CVETINOV M, et al. The properties of conventionally and microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels[J]. Polymer Bulletin,2020,77(4):2089-2110. DOI: 10.1007/s00289-019-02840-w.
    [49] ZHANG J, CHEN B Y, CHEN X Y, et al. Liquid-based adaptive structural materials[J]. Advanced Materials,2021,33(50):2005664. doi: 10.1002/adma.202005664
    [50] ZHU Y Y, LIU J, GUO T, et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding[J]. ACS Nano,2021,15(1):1465-1474.
    [51] WANG X Y, GUO C X, PI M H, et al. Significant roles of ions in enhancing and functionalizing anisotropic hydrogels[J]. ACS Applied Materials & Interfaces,2022,14(45):51318-51328.
    [52] ZHOU X Y, ZHAO F, GUO Y H, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances,2019,5(6):eaaw5484. doi: 10.1126/sciadv.aaw5484
    [53] YANG Y F, WU N, LI B, et al. Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding[J]. ACS Nano,2022,16(9):15042-15052.
    [54] YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical Society Reviews,2019,48(6):1642-1667. doi: 10.1039/C8CS00595H
    [55] LIU J, ZHU Z Y, ZHOU W Q, et al. Flexible metal-free hybrid hydrogel thermoelectric fibers[J]. Journal of Materials Science,2020,55(19):8376-8387. doi: 10.1007/s10853-020-04382-3
    [56] WEI Y, XIANG L J, OU H J, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials,2020,30(48):2005135. doi: 10.1002/adfm.202005135
    [57] CHAUBE H A, RANA V A, HUDGE P, et al. Dielectric relaxation studies of binary mixture of diethylene glycol mono phenyl ether and methanol by time domain reflectometry[J]. Journal of Molecular Liquids,2015,211:346-352. doi: 10.1016/j.molliq.2015.07.020
    [58] ZHAO Z H, ZHANG L M, WU H J. Hydro/organo/ionogels: "controllable" electromagnetic wave absorbers[J]. Advanced Materials,2022,34(43):2205376. doi: 10.1002/adma.202205376
    [59] GUISEPPI-ELIE A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications[J]. Biomaterials,2010,31(10):2701-2716. doi: 10.1016/j.biomaterials.2009.12.052
    [60] LI G, LI C L, LI G D, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small,2022,18(5):2101518. doi: 10.1002/smll.202101518
    [61] ZHOU C X, YUAN S W, DAI T W, et al. Environment-adaptable PAM/PVA semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance[J]. Polymer,2022,253:125028. doi: 10.1016/j.polymer.2022.125028
    [62] TANG L, WU S, QU J, et al. A review of conductive hydrogel used in flexible strain sensor[J]. Materials,2020,13(18):3947. doi: 10.3390/ma13183947
    [63] RAO A, VÁSQUEZ-QUITRAL P, FERNÁNDEZ M S, et al. pH-dependent schemes of calcium carbonate formation in the presence of alginates[J]. Crystal Growth & Design,2016,16(3):1349-1359. DOI: 10.1021/acs.cgd.5b01488.
    [64] SEKINE Y, IKEDA-FUKAZAWA T. Structural changes of water in a hydrogel during dehydration[J]. The Journal of Chemical Physics,2009,130(3):034501. doi: 10.1063/1.3058616
    [65] WANG S H, YU L, WANG S S, et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions[J]. Nature Communications,2022,13(1):3408. doi: 10.1038/s41467-022-30224-8
    [66] GAO Y, WANG Y R, XIA S, et al. An environment-stable hydrogel with skin-matchable performance for human-machine interface[J]. Science China Materials,2021,64(9):2313-2324. doi: 10.1007/s40843-020-1624-y
    [67] LEE C J, WU H Y, HU Y, et al. Ionic conductivity of polyelectrolyte hydrogels[J]. ACS Applied Materials & Interfaces,2018,10(6):5845-5852. DOI: 10.1021/acsami.7b15934.
    [68] GUO Y H, BAE J, FANG Z W, et al. Hydrogels and hydrogel-derived materials for energy and water sustainability[J]. Chemical Reviews,2020,120(15):7642-7707. doi: 10.1021/acs.chemrev.0c00345
    [69] DAUTZENBERG H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt:   Polyelectrolyte complex formation in the presence of NaCl[J]. Macromolecules,1997,30(25):7810-7815. doi: 10.1021/ma970803f
    [70] DING Y, TANG H Q, ZHANG C H, et al. High-throughput screening of self-healable polysulfobetaine hydrogels and their applications in flexible electronics[J]. Advanced Functional Materials,2021,31(18):2100489. doi: 10.1002/adfm.202100489
    [71] HOU P F, YANG K X, NI K K, et al. An ultrathin flexible electronic device based on the tunneling effect: a flexible ferroelectric tunnel junction[J]. Journal of Materials Chemistry C,2018,6(19):5193-5198. doi: 10.1039/C8TC00500A
    [72] XU C, ZI Y L, WANG A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials,2018,30(15):1706790. doi: 10.1002/adma.201706790
    [73] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double-network structural materials for electromagnetic shielding[J]. Nano Letters,2021,21(6):2532-2537. doi: 10.1021/acs.nanolett.0c05081
    [74] YAN X, HUANG X X, ZHONG B, et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials[J]. Chemical Engineering Journal,2020,391:123539. doi: 10.1016/j.cej.2019.123539
    [75] MAO Q, YANG L, GENG X M, et al. Interface strain induced hydrophobic facet suppression in cellulose nanocomposite embedded with highly oxidized monolayer graphene oxide[J]. Advanced Materials Interfaces,2017,4(23):1700995. doi: 10.1002/admi.201700995
    [76] MALAKI M, MALEKI A, VARMA R S. MXenes and ultrasonication[J]. Journal of Materials Chemistry A,2019,7(18):10843-10857. doi: 10.1039/C9TA01850F
    [77] ZHOU C, ZHAO X H, XIONG Y S, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal,2022,167:111063. doi: 10.1016/j.eurpolymj.2022.111063
    [78] WANG Q H, PAN X F, WANG X P, et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: A mini-review[J]. Ceramics International,2021,47(4):4398-4403. doi: 10.1016/j.ceramint.2020.10.096
    [79] LU B Y, YUK H, LIN S T, et al. Pure PEDOT: PSS hydrogels[J]. Nature Communications,2019,10(1):1043. doi: 10.1038/s41467-019-09003-5
    [80] LIU Y, ZHANG Z, YANG X, et al. A stretchable, environmentally stable, and mechanically robust nanocomposite polyurethane organohydrogel with anti-freezing, anti-dehydration, and electromagnetic shielding properties for strain sensors and magnetic actuators[J]. Journal of Materials Chemistry A,2023,11(12):6603-6614. doi: 10.1039/D2TA09205K
    [81] JIAN Y K, WU B Y, LE X X, et al. Antifreezing and stretchable organohydrogels as soft actuators[J]. Research,2019,2019:2384347.
    [82] PENG W, HAN L, GAO Y, et al. Flexible organohydrogel ionic skin with ultra-low temperature freezing resistance and ultra-durable moisture retention[J]. Journal of Colloid and Interface Science, 2022, 608(Pt 1): 396-404
  • 加载中
图(13)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  308
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-05-19
  • 录用日期:  2023-06-12
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回