留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光沉积Pt复合石墨相氮化碳实现高效光催化产氢

牛凤延 何齐升 武世然 郭晨曦 雷伟岩 沈毅

牛凤延, 何齐升, 武世然, 等. 光沉积Pt复合石墨相氮化碳实现高效光催化产氢[J]. 复合材料学报, 2024, 41(1): 219-226. doi: 10.13801/j.cnki.fhclxb.20230614.001
引用本文: 牛凤延, 何齐升, 武世然, 等. 光沉积Pt复合石墨相氮化碳实现高效光催化产氢[J]. 复合材料学报, 2024, 41(1): 219-226. doi: 10.13801/j.cnki.fhclxb.20230614.001
NIU Fengyan, HE Qisheng, WU Shiran, et al. Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 219-226. doi: 10.13801/j.cnki.fhclxb.20230614.001
Citation: NIU Fengyan, HE Qisheng, WU Shiran, et al. Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 219-226. doi: 10.13801/j.cnki.fhclxb.20230614.001

光沉积Pt复合石墨相氮化碳实现高效光催化产氢

doi: 10.13801/j.cnki.fhclxb.20230614.001
基金项目: 国家自然科学基金 (51772099;51572069)
详细信息
    通讯作者:

    沈毅,博士,教授,博士生导师,研究方向为光催化材料 E-mail: shenyinfy@163.com

  • 中图分类号: TB333

Photodeposition Pt composite graphitic carbon nitride realizes efficient photocatalytic hydrogen production

Funds: National Natural Science Foundation of China (51772099; 51572069)
  • 摘要: 贵金属作为助催化剂,可以提高石墨相氮化碳(g-C3N4)光催化产氢的性能,引起了人们的广泛关注。但是,由于贵金属的不可再生性和高价格,“更少的贵金属,更好的性能”始终是目标。为了实现这一目标,通过光沉积还原法成功制备了一系列不同铂负载量氮化碳复合材料(Pt/CN),并用于光催化产H2。结果表明:不同Pt负载量的Pt/CN复合材料都表现出优异的光催化产氢性能。并发现当Pt的负载量为0.5wt%时, Pt/CN复合材料具有最优异的光催化产氢活性,产氢量为409.2 μmol/g,是纯CN (17.8 μmol/g)的23倍,同时证实了Pt和CN二者之间形成了肖特基势垒,使导带的电子快速迁移到Pt上,降低了CN的电子-空穴复合速率。并且Pt作为光催化分解水的活性位点,促进水中的绝大部分氢质子快速吸附到Pt位点,得到电子被还原为H2,实现了高效光催化产氢。

     

  • 图  1  石墨相氮化碳(CN) (a) 和Pt/CN (b) 的制备

    Figure  1.  Synthesis of graphitic carbon nitride (CN) (a) and Pt/CN (b)

    g-C3N4—Graphitic carbon nitride (CN)

    图  2  不同Pt负载量下Pt/CN的XRD图谱(a)和FTIR图谱(b)

    Figure  2.  XRD patterns (a) and FTIR spectra (b) of Pt/CN under different Pt doping amounts

    图  3  0.5wt%Pt/CN 样品的TEM图像((a), (b))、EDS能谱(插表为ZAF法无标定量分析) (c)、Mapping ((d)~(g))

    Figure  3.  TEM images ((a), (b)), EDS energy spectrum (Insert table is Zahl absorption fluorescence method (ZAF) standardless quantitative analysis) (c), mapping ((d)-(g)) of 0.5wt%Pt/CN sample

    图  4  CN (a)和0.5wt%Pt/CN复合材料(b)的氮气吸附-脱附曲线及孔径分布图(c)

    Figure  4.  Nitrogen adsorption-desorption curve of CN (a) and 0.5wt%Pt/CN composites (b) and pore size distribution (c)

    STP—Standard temperature and pressure

    图  5  不同Pt负载量下Pt/CN的UV-vis DRS (a)、Tauc-plot图(b)、PL光谱(c)、EIS (d)、瞬时光响应电流图(e)

    Figure  5.  UV-vis DRS (a), Tauc-plot (b), PL spectra (c), EIS (d), transient photocurrent density (e) of Pt/CN under different Pt doping amounts

    图  6  (a)不同Pt负载量下Pt/CN的光解水产H2曲线;(b) 0.5wt%Pt/CN的循环光催化测试;反应前后0.5wt%Pt/CN的XRD图谱(c)和FTIR图谱(d)

    Figure  6.  (a) Photolyzed aquatic H2 curves of Pt/CN under different Pt doping amounts; (b) Cycling photocatalytic test of 0.5wt%Pt/CN; XRD patterns (c) and FTIR spectra (d) of 0.5wt%Pt/CN before and after reaction

    图  7  Pt/CN 复合光催化产氢过程

    Figure  7.  Pt/CN composite photocatalytic hydrogen production process

  • [1] KARTHIKEYAN C, ARUNACHALAM P, RAMACHANDRAN K, et al. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J]. Journal of Alloys and Compounds,2020,828:154281. doi: 10.1016/j.jallcom.2020.154281
    [2] ZHANG S, WANG K, LI F, et al. Structure-mechanism relationship for enhancing photocatalytic H2 production[J]. International Journal of Hydrogen Energy,2022,47(88):37517-37530. doi: 10.1016/j.ijhydene.2021.10.139
    [3] XIONG S, TANG R, GONG D, et al. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2022,43(7):1719-1748. doi: 10.1016/S1872-2067(21)63994-3
    [4] MUN S J, PARK S J. Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: A short review[J]. Catalysts,2019,9(10):805. doi: 10.3390/catal9100805
    [5] ZHOU Y Z, ZHANG L X, QIN L X, et al. A mixed phase lanthanum vanadate in situ induced by graphene oxide/graphite carbon nitride for efficient photocatalytic hydrogen generation[J]. International Journal of Hydrogen Energy,2021,46(54):27495-27505. doi: 10.1016/j.ijhydene.2021.05.213
    [6] XUE F, CHEN C, FU W L, et al. Interfacial and dimensional effects of Pd co-catalyst for efficient photocatalytic hydrogen generation[J]. The Journal of Physical Chemistry C,2018,122(44):25165-25173. doi: 10.1021/acs.jpcc.8b06943
    [7] LI K, LIN Y Z, WANG K, et al. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride[J]. Applied Catalysis B: Environmental,2020,268:118402. doi: 10.1016/j.apcatb.2019.118402
    [8] WU Q K, JEONG T, KIM S H, et al. Synthesis of large area graphitic carbon nitride nanosheet by chemical vapor deposition[J]. Journal of Alloys and Compounds,2022,900:163310. doi: 10.1016/j.jallcom.2021.163310
    [9] DING L, QI F, LI Y F, et al. In-situ formation of nanosized 1T-phase MoS2 in B-doped carbon nitride for high efficient visible-light-driven H2 production[J]. Journal of Colloid and Interface Science,2022,614:92-101. doi: 10.1016/j.jcis.2022.01.100
    [10] JIANG W S, ZHAO Y J, ZONG X P, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride[J]. Angewandte Chemie International Edition,2021,60(11):6124-6129. doi: 10.1002/anie.202015779
    [11] LIU Y, GAO M Y, YANG W W, et al. Facile synthesis of monodisperse Pt nanoparticles on graphitic carbon Nitride for high-performance photocatalytic H2 evolution[J]. ChemistrySelect,2022,7(9):e202103882.
    [12] PENG Y, LU B Z, CHEN L M, et al. Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets[J]. Journal of Materials Chemistry A,2017,5(34):18261-18269. doi: 10.1039/C7TA03826G
    [13] WU J E, ZHANG Y Y, ZHANG B, et al. Zn-doped CoS2 nanoarrays for an efficient oxygen evolution reaction: Understanding the doping effect for a precatalyst[J]. ACS Applied Materials & Interfaces,2022,14(12):14235-14242.
    [14] HUANG L, LIU X, WU H C, et al. Surface state modulation for size-controllable photodeposition of noble metal nanoparticles on semiconductors[J]. Journal of Materials Chemistry A,2020,8(40):21094-21102. doi: 10.1039/C9TA14181B
    [15] BAI L, LI Y J, ZHAO J, et al. Highly efficient utilization of precious metals for hydrogen evolution reaction with photo-assisted electro-deposited urchin-like Te nano- structure as a template[J]. ChemCatChem,2019,11(9):2283-2287. doi: 10.1002/cctc.201900125
    [16] WU H C, LIU Y D, CHEN G L, et al. Surface-confined photodeposition of noble metal nanoclusters on TiO2 in a fluidized bed for the catalytic oxidation of formaldehyde[J]. ACS Applied Nano Materials,2022,5(9):13100-13111. doi: 10.1021/acsanm.2c02886
    [17] KARÁCSONVI É, BAIA L, DONBI A, et al. The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitecture obtained by selective photodeposition[J]. Catalysis Today,2013,208:19-27. doi: 10.1016/j.cattod.2012.09.038
    [18] LIU Y D, NASERI A, LI T, et al. Shape-controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide[J]. ACS Applied Materials & Interfaces,2022,14(14):16527-16537.
    [19] ONG W J, TAN L L, CHAI S P, et al. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane[J]. Dalton Transactions,2015,44(3):1249-1257. doi: 10.1039/C4DT02940B
    [20] LIU Z, HUO P, LU Z, et al. Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator[J]. Chemical Engineering Journal,2018,331:615-625. doi: 10.1016/j.cej.2017.08.131
    [21] 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2):591-600.

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica,2021,38(2):591-600(in Chinese).
    [22] 孙术博, 于海瀚, 李强, 等. NaNbO3@g-C3N4复合材料的可控构筑及其压电光催化性能[J]. 复合材料学报, 2023, 40(3):1534-1540.

    SUN Shubo, YU Haihan, LI Qiang, et al. Controlled construction of NaNbO3@g-C3N4 composites and their piezo-photocatalytic properties[J]. Acta Materiae Compositae Sinica,2023,40(3):1534-1540(in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  294
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-05-18
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回