留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生超疏水表面的生物医学应用进展

尧婉辰 程静 孙文文 林祥德

尧婉辰, 程静, 孙文文, 等. 仿生超疏水表面的生物医学应用进展[J]. 复合材料学报, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003
引用本文: 尧婉辰, 程静, 孙文文, 等. 仿生超疏水表面的生物医学应用进展[J]. 复合材料学报, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003
YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003
Citation: YAO Wanchen, CHENG Jing, SUN Wenwen, et al. Recent advances in bioinspired superhydrophobic surfaces for biomedical applications[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5502-5517. doi: 10.13801/j.cnki.fhclxb.20230607.003

仿生超疏水表面的生物医学应用进展

doi: 10.13801/j.cnki.fhclxb.20230607.003
基金项目: 国家自然科学基金(22008151);上海市青年科技英才扬帆计划项目(20YF1418000);上海健康医学院优秀博士/硕士学位论文培育项目(E1-2601-22-203001)
详细信息
    通讯作者:

    孙文文,博士,讲师,研究方向为环境健康材料 E-mail: sunww@sumhs.edu.cn

    林祥德,博士,副教授,硕士生导师,研究方向为超浸润界面和生物材料 E-mail: linxd@sumhs.edu.cn

  • 中图分类号: TB34;TB332

Recent advances in bioinspired superhydrophobic surfaces for biomedical applications

Funds: National Natural Science Foundation of China (22008151); Shanghai Sailing Program (20YF1418000); Excellent Doctoral/Master Dissertation Training Program of Shanghai University of Medicine & Health Sciences (E1-2601-22-203001)
  • 摘要: 仿生超疏水表面已被广泛应用于健康、环境和能源等重大领域。首先,结合超疏水经典浸润理论,简要回顾了其仿生设计和制备技术。其次,超疏水表面存在高度疏水/憎血、生物/血液相容、抗血凝/血栓、表面抑菌、低生物黏附等显著的生物学效应,在生物医学领域引起了广泛的关注。本文重点综述了近年来超疏水表面在伤口愈合(止血敷料)、抗凝抗血栓(血液接触类医疗器械)、表面抗菌、药物释放、运动监测、生物芯片、镁合金防腐、生物医学检测等代表性领域的应用进展。最后,结合自身研究经验,展望分析了仿生超疏水表面在实际生物医学应用中尚存在的瓶颈,主要涉及机械耐久性、化学腐蚀性、生物污染性、界面构建技术和生物医学应用等方面。因此,聚焦实际功能和性能,超疏水表面最终将从概念设计走向工业应用。

     

  • 图  1  仿生超疏水表面在生物医学方面的应用[13-20]

    Figure  1.  Application of biomimetic superhydrophobic surface in biomedicine[13-20]

    SHP—Superhydrophobicity; LDH-LA—Layered double hydroxide-lauric acid; SMS—Superwettable microspine

    图  2  基于碳纳米纤维(CNF)的快速止血和易剥离性超疏水止血敷料[42]:(a) 滚落模式下形成的纤维蛋白束;(b) 接触分离模式下形成的纤维蛋白束;(c) 超疏水致密空气层和血凝界面示意图;(d) 基于CNF清除的血凝块剥离示意图

    Figure  2.  Carbon nanofiber (CNF)-based superhydrophobic hemostatic dressing with rapid hemostasis and easy stripping[42]: (a) Fibrin bundles formed in tumbling mode; (b) Fibrin bundles formed in contact separation mode; (c) Schematic diagram of superhydrophobic dense air layer and hemagglutination interface; (d) Schematic diagram of blood clot stripping based on CNF scavenging

    图  3  基于超疏水憎血性界面的血液接触类医疗器械概念[45]

    Figure  3.  Concept of blood-contact medical devices based on the super-hydrophobic and blood-repellent interface[45]

    图  4  超疏水表面的抗菌作用机制示意图[52]

    Figure  4.  Schematic diagram of antibacterial action mechanism of superhydrophobic surface[52]

    NPs—Nanoparticles

    图  5  基于超疏水表面的药物释放系统:(a) 超疏水表面的药物洗脱机制[13];(b) 以超声处理触发的药物释放[57];(c) 超疏水多层结构材料的机械响应药物释放[59]

    Figure  5.  Drug delivery system based on superhydrophobic materials: (a) Drug elution mechanism of superhydrophobic materials [13]; (b) Drug release triggered by ultrasound treatment[57]; (c) Drug release in mechanical response of superhydrophobic multilayered structural materials[59]

    θ—Contact angle

    图  6  柔性传感器在内部和外部水环境中的应用[61]

    Figure  6.  Applications of flexible sensors in internal and external water environments[61]

    图  7  用于多成分生物检测的基于液体定向传输的仿生超浸润性生物芯片[18]

    Figure  7.  Biomimetic superinfiltrative biochip based on liquid directed transmission for multi-component biological detection[18]

    图  8  基于仿生超疏水表面的镁合金防腐策略[82]

    Figure  8.  Anti-corrosion strategy of magnesium alloy based on bionic superhydrophobic surface[82]

    Z—Impedance; EIS—Electrochemical impedance spectroscopy; E—Corrosion potentials; i—Current densities; MAO—Microarc oxidation; f—Frequency

    图  9  用于汗液采样和成分检测的超浸润贴片[97]:(a) 基于超浸润界面的汗液成分检测示意图;(b) 横截面及检测原理示意图

    Figure  9.  Superwettable bands for sweat sampling and composition detection[97]: ( a) Schematic diagram of sweat composition detection based on the superwetted interface; (b) Schematic diagram of cross section and detection principle

    R—Red; G—Green; B—Blue

    表  1  代表性超疏水柔性应变传感器的材料组成及传感性能对比

    Table  1.   Comparison of material composition and sensing properties of representative superhydrophobic flexible strain sensors

    MaterialsSubstrateContact angleStretchabilityGauge factorRef.
    MWCNTsSilicone rubber154.5°447%2.1-214[64]
    rGO/PDMSAcrylic tape157.7°400%1.84-1199[63]
    OCA/Ag NPsRubber band152.6°5%-120%3.4-61.8[65]
    SiO2/MWCNTsPaper164°263.34[66]
    MWCNTsPDMS162°200%11.41-22.64[67]
    PDA/rGO/PFDTPolyurethane153.3°590%221[14]
    Ag NWs/PDMSPolyurethane153.04°38%-100%1.36×105[68]
    rGO/PDMSAcrylic tape155°300%1.67×105[69]
    Ag NPs/PDMSRubber155°900%3.6×108[28]
    PDA/Ag NPsRubber160°1000%108[70]
    Notes: MWCNTs—Multi-walled carbon nanotubes; rGO—Reduced graphene oxide; PDMS—Polydimethylsiloxane; OCA—Octadecanoic acid; PDA—Polydopamine; PFDT—1H, 1H, 2H, 2H-perfluorodecane-thiol.
    下载: 导出CSV
  • [1] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):61-83.

    WANG Pengwei, LIU Mingjie, JIANG Lei. Biomimetic multiscale superinfiltrating interfacial materials[J]. Journal of Physics,2016,65(18):61-83(in Chinese).
    [2] LIU M, WANG S, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials,2017,2(7):1-17.
    [3] YONG H, LI Z, HUANG X, et al. Superhydrophobic materials: Versatility and translational applications[J]. Advanced Materials Interfaces,2022,9(30):2200435. doi: 10.1002/admi.202200435
    [4] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany,1997,79(6):667-677. doi: 10.1006/anbo.1997.0400
    [5] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8. doi: 10.1007/s004250050096
    [6] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials,2002,14(24):1857-1860. doi: 10.1002/adma.200290020
    [7] ZHANG W, WANG D, SUN Z, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews,2021,50(6):4031-4061. doi: 10.1039/D0CS00751J
    [8] LIN X, HONG J. Recent advances in robust superwettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2019,6(12):1900126. doi: 10.1002/admi.201900126
    [9] CIVAN F. Model for interpretation and correlation of contact angle measurements[J]. Journal of Colloid & Interface Science,1997,192(2):500-502.
    [10] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Transactions of the Faraday Society,1936,28(8):988-994. doi: 10.1021/ie50320a024
    [11] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551. doi: 10.1039/tf9444000546
    [12] ZENG Q, ZHOU H, HUANG J, et al. Review on the recent development of durable superhydrophobic materials for practical applications[J]. Nanoscale,2021,13(27):11734-11764. doi: 10.1039/D1NR01936H
    [13] YOHE S T, COLSON Y L, GRINSTAFF M W. Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates[J]. Journal of the American Chemical Society,2012,134(4):2016-2019. doi: 10.1021/ja211148a
    [14] GAO W, WU W, CHEN C, et al. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring[J]. ACS Applied Materials & Interfaces,2022,14(1):1874-1884.
    [15] ZHU T, WU J, ZHAO N, et al. Superhydrophobic/superhydrophilic Janus fabrics reducing blood loss[J]. Advanced Healthcare Materials,2018,7(7):1701086. doi: 10.1002/adhm.201701086
    [16] YE Z, LI S, ZHAO S, et al. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J]. Chemical Engineering Journal,2021,420:127680. doi: 10.1016/j.cej.2020.127680
    [17] ZHU Y, SONG G, WU P, et al. A protective superhydrophobic Mg-Zn-Al LDH film on surface-alloyed magnesium[J]. Journal of Alloys and Compounds,2021,855:157550. doi: 10.1016/j.jallcom.2020.157550
    [18] CHEN Y, LI K, ZHANG S, et al. Bioinspired superwettable microspine chips with directional droplet transportation for biosensing[J]. ACS Nano,2020,14(4):4654-4661. doi: 10.1021/acsnano.0c00324
    [19] ALLIONE M, LIMONGI T, MARINI M, et al. Micro/nanopatterned superhydrophobic surfaces fabrication for biomolecules and biomaterials manipulation and analysis[J]. Micromachines,2021,12(12):1501. doi: 10.3390/mi12121501
    [20] LI J, TIAN J, GAO Y, et al. All-natural superhydrophobic coating for packaging and blood-repelling materials[J]. Chemical Engineering Journal,2021,410:128347. doi: 10.1016/j.cej.2020.128347
    [21] BHUSHAN B, NOSONOVSKY M. The rose petal effect and the modes of superhydrophobicity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2010,368(1929):4713-4728. doi: 10.1098/rsta.2010.0203
    [22] SHAO Y, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between "Lotus Effect" to "Rose Petal Effect"[J]. Chemical Engineering Journal,2020,382:122989. doi: 10.1016/j.cej.2019.122989
    [23] HAN Z, MU Z, LI B, et al. Active antifogging property of monolayer SiO2 film with bioinspired multiscale hierarchical pagoda structures[J]. ACS Nano,2016,10(9):8591-8602. doi: 10.1021/acsnano.6b03884
    [24] KOH J, YANG E, JUNG G, et al. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects[J]. Science,2015,349(6247):517-521. doi: 10.1126/science.aab1637
    [25] YAMAUCHI Y, TENJIMBAYASHI M, SAMITSU S, et al. Durable and flexible superhydrophobic materials: Abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure[J]. ACS Applied Materials & Interfaces,2019,11(35):32381-32389. doi: 10.1021/acsami.9b09524
    [26] LIU L, SHAN Y, PU M, et al. Preparation of superhydrophobic fabrics via chemical self-healing strategy and their high oil/water separation performance and enhanced durability[J]. Macromolecular Chemistry and Physics,2020,221(2):1900356. doi: 10.1002/macp.201900356
    [27] HUANG Z S, QUAN Y Y, MAO J J, et al. Multifunctional superhydrophobic composite materials with remarkable mechanochemical robustness, stain repellency, oil-water separation and sound-absorption properties[J]. Chemical Engineering Journal,2019,358:1610-1619. doi: 10.1016/j.cej.2018.10.123
    [28] WANG L, LUO J, CHEN Y, et al. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors[J]. ACS Applied Materials & Interfaces,2019,11(19):17774-17783.
    [29] AHMAD S, ZHANG J, FENG P, et al. Processing technologies for nomex honeycomb composites (NHCs): A critical review[J]. Composite Structures,2020,250:112545. doi: 10.1016/j.compstruct.2020.112545
    [30] LU Y, SATHASIVAM S, SONG J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [31] CHEN J, YUAN L, SHI C, et al. Nature-inspired hierarchical protrusion structure construction for washable and wear-resistant superhydrophobic textiles with self-cleaning ability[J]. ACS Applied Materials & Interfaces,2021,13(15):18142-18151.
    [32] CHEN G, DAI Z, DING S, et al. Realization of integrative hierarchy by in-situ solidification of 'semi-cured' microcilia array in candle flame for robust and flexible superhydrophobicity[J]. Chemical Engineering Journal,2022,432:134400. doi: 10.1016/j.cej.2021.134400
    [33] GHODRATI M, MOUSAVI-KAMAZANI M, BAHRAMI Z. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces[J]. Scientific Reports,2023,13(1):548. doi: 10.1038/s41598-023-27811-0
    [34] YANG Z, LI H, ZHANG S, et al. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal,2021,425:130462. doi: 10.1016/j.cej.2021.130462
    [35] LIU L, MA Z, ZHU M, et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection[J]. Journal of Materials Science & Technology,2023,132:59-68.
    [36] LI S, PAGE K, SATHASIVAM S, et al. Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability[J]. Journal of Materials Chemistry A,2018,6(36):17633-17641. doi: 10.1039/C8TA05402A
    [37] LIN X, HEO J, CHOI M, et al. Simply realizing durable dual Janus superwettable membranes integrating underwater low-oil-adhesive with super-water-repellent surfaces for controlled oil-water permeation[J]. Journal of Membrane Science,2019,580:248-255. doi: 10.1016/j.memsci.2019.03.038
    [38] LIU M, LI M, XU S, et al. Bioinspired superhydrophobic surfaces via laser-structuring[J]. Frontiers in Chemistry,2020,8:835-839. doi: 10.3389/fchem.2020.00835
    [39] CHAKRABORTY A, MULRONEY A T, GUPTA M C. Superhydrophobic surfaces by microtexturing: A critical review[J]. Progress in Adhesion and Adhesives,2021,6:621-649.
    [40] KAUR G, MARMUR A, MAGDASSI S. Fabrication of superhydrophobic 3D objects by digital light processing[J]. Additive Manufacturing,2020,36:101669. doi: 10.1016/j.addma.2020.101669
    [41] LIU G, XIANG J, XIA Q, et al. Superhydrophobic cotton gauze with durably antibacterial activity as skin wound dressing[J]. Cellulose,2019,26(2):1383-1397. doi: 10.1007/s10570-018-2110-y
    [42] LI Z, MILIONIS A, ZHENG Y, et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion[J]. Nature Communications,2019,10(1):1-11. doi: 10.1038/s41467-018-07882-8
    [43] LI W, YU Q, YAO H, et al. Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns[J]. Acta Biomaterialia,2019,92:60-70. doi: 10.1016/j.actbio.2019.05.025
    [44] MOVAFAGHI S, WANG W, BARK D L, et al. Hemocompatibility of super-repellent surfaces: Current and future[J]. Materials Horizons,2019,6(8):1596-1610. doi: 10.1039/C9MH00051H
    [45] JOKINEN V, KANKURI E, HOSHIAN S, et al. Superhydrophobic blood-repellent surfaces[J]. Advanced Materials,2018,30(24):1705104. doi: 10.1002/adma.201705104
    [46] FALDE E J, YOHE S T, COLSON Y L, et al. Superhydrophobic materials for biomedical applications[J]. Biomaterials,2016,104:87-103. doi: 10.1016/j.biomaterials.2016.06.050
    [47] WU X H, LIEW Y K, MAI C, et al. Potential of superhydrophobic surface for blood-contacting medical devices[J]. International Journal of Molecular Sciences,2021,22(7):3341. doi: 10.3390/ijms22073341
    [48] ZHANG J, LI G, LI D, et al. In vivo blood-repellent performance of a controllable facile-generated superhydrophobic surface[J]. ACS Applied Materials & Interfaces,2021,13(24):29021-29033.
    [49] LI Z, NGUYEN B L, CHENG Y C, et al. Durable, flexible, superhydrophobic and blood-repelling surfaces for use in medical blood pumps[J]. Journal of Materials Chemistry B,2018,6(39):6225-6233. doi: 10.1039/C8TB01547C
    [50] LI W, THIAN E S, WANG M, et al. Surface design for antibacterial materials: From fundamentals to advanced strategies[J]. Advanced Science,2021,8(19):2100368. doi: 10.1002/advs.202100368
    [51] 田娜, 苏琼, 王彦斌, 等. 抗菌超疏水功能复合型涂料的研究进展[J]. 功能材料, 2023, 54(1):1040-1049.

    TIAN Na, SU Qiong, WANG Yanbin, et al. Research progress of antibacterial superhydrophobic functional composite coatings[J]. Functional Materials,2023,54(1):1040-1049(in Chinese).
    [52] ZHAN Y, YU S, AMIRFAZLI A, et al. Recent advances in antibacterial superhydrophobic coatings[J]. Advanced Engineering Materials,2022,24(4):2101053. doi: 10.1002/adem.202101053
    [53] SAHIN F, CELIK N, CEYLAN A, et al. Antifouling superhydrophobic surfaces with bactericidal and SERS activity[J]. Chemical Engineering Journal,2022,431:133445. doi: 10.1016/j.cej.2021.133445
    [54] NADERIZADEH S, DANTE S, PICONE P, et al. Bioresin-based superhydrophobic coatings with reduced bacterial adhesion[J]. Journal of Colloid and Interface Science,2020,574:20-32. doi: 10.1016/j.jcis.2020.04.031
    [55] CHAN Y, WU X H, CHIENG B W, et al. Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections[J]. Nanomaterials,2021,11(4):1046. doi: 10.3390/nano11041046
    [56] ZHAO S, YANG X, XU Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions[J]. Nano Research,2022,15(6):5245-5255. doi: 10.1007/s12274-022-4136-6
    [57] YOHE S T, KOPECHEK J A, PORTER T M, et al. Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound[J]. Advanced Healthcare Materials,2013,2(9):1204-1208. doi: 10.1002/adhm.201200381
    [58] ZHOU J, FRANK M A, YANG Y, et al. A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. doi: 10.1016/j.msec.2017.08.066
    [59] WANG J, COLSON Y L, GRINSTAFF M W. Tension-activated delivery of small molecules and proteins from superhydrophobic composites[J]. Advanced Healthcare Materials,2018,7(7):1701096. doi: 10.1002/adhm.201701096
    [60] DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A,2014,2(39):16319-16359. doi: 10.1039/C4TA02071E
    [61] WANG X, LIU Y, CHENG H, et al. Surface wettability for skin-interfaced sensors and devices[J]. Advanced Functional Materials,2022,32(27):2200260. doi: 10.1002/adfm.202200260
    [62] LIN J, CAI X, LIU Z, et al. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on cassie-baxter wetting state[J]. Advanced Functional Materials,2020,30(23):2000398. doi: 10.1002/adfm.202000398
    [63] CHU Z, JIAO W, LI J, et al. A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance[J]. Chemical Engineering Journal,2021,421:129873. doi: 10.1016/j.cej.2021.129873
    [64] JIA S, DENG S, QING Y, et al. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection[J]. Chemical Engineering Journal,2021,410:128418. doi: 10.1016/j.cej.2021.128418
    [65] WANG L, XIA M, WANG D, et al. Bioinspired superhydrophobic and durable octadecanoic acid/Ag nanoparticle-decorated rubber composites for high-performance strain sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(21):7245-7254.
    [66] LIU L, JIAO Z, ZHANG J, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces,2021,13(1):1967-1978.
    [67] WANG P, WEI W, LI Z, et al. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance[J]. Journal of Materials Chemistry A,2020,8(6):3509-3516. doi: 10.1039/C9TA13281C
    [68] LIN L, CHOI Y, CHEN T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring[J]. Chemical Engineering Journal,2021,419:129513. doi: 10.1016/j.cej.2021.129513
    [69] CHU Z, JIAO W, HUANG Y, et al. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring[J]. Journal of Materials Chemistry A,2021,9(15):9634-9643. doi: 10.1039/D0TA11959H
    [70] WANG L, WANG H, HUANG X, et al. Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property[J]. Journal of Materials Chemistry A,2018,6(47):24523-24533. doi: 10.1039/C8TA07847E
    [71] ZHANG J, ZHANG Y, YONG J, et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting[J]. Optics & Laser Technology,2022,146:107593.
    [72] ISHIZAKI T, SAITO N, TAKAI O. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry[J]. Langmuir,2010,26(11):8147-8154. doi: 10.1021/la904447c
    [73] POPOVA A A, DEMIR K, HARTANTO T G, et al. Droplet-microarray on superhydrophobic-superhydrophilic patterns for high-throughput live cell screenings[J]. RSC Advances,2016,6(44):38263-38276. doi: 10.1039/C6RA06011K
    [74] SUN Y, SONG W, SUN X, et al. Inkjet-printing patterned chip on sticky superhydrophobic surface for high-efficiency single-cell array trapping and real-time observation of cellular apoptosis[J]. ACS Applied Materials & Interfaces,2018,10(37):31054-31060.
    [75] CHI J, ZHANG X, WANG Y, et al. Bio-inspired wettability patterns for biomedical applications[J]. Materials Horizons,2021,8(1):124-144. doi: 10.1039/D0MH01293A
    [76] UEDA E, LEVKIN P A. Emerging applications of superhydrophilic-superhydrophobic micropatterns[J]. Advanced Materials,2013,25(9):1234-1247. doi: 10.1002/adma.201204120
    [77] CHEN Y, XU L, MENG J, et al. Superwettable microchips with improved spot homogeneity toward sensitive biosensing[J]. Biosensors and Bioelectronics,2018,102:418-424. doi: 10.1016/j.bios.2017.11.036
    [78] WU T, XU T, CHEN Y, et al. Renewable superwettable biochip for miRNA detection[J]. Sensors and Actuators B: Chemical,2018,258:715-721. doi: 10.1016/j.snb.2017.11.109
    [79] FAN H, GUO Z. Bioinspired surfaces with wettability: Biomolecule adhesion behaviors[J]. Biomaterials Science,2020,8(6):1502-1535. doi: 10.1039/C9BM01729A
    [80] MALARA N, GENTILE F, COPPEDE N, et al. Superhydrophobic lab-on-chip measures secretome protonation state and provides a personalized risk assessment of sporadic tumour[J]. NPJ Precision Oncology,2018,2(1):26. doi: 10.1038/s41698-018-0069-7
    [81] SAJI V S. Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys[J]. Journal of Magnesium and Alloys,2021,9(3):748-778. doi: 10.1016/j.jma.2021.01.005
    [82] SONG S, YAN H, CAI M, et al. Superhydrophobic composite coating for reliable corrosion protection of Mg alloy[J]. Materials & Design,2022,215:110433.
    [83] WEI D, WANG J, LIU Y, et al. Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance[J]. Chemical Engineering Journal,2021,404:126444. doi: 10.1016/j.cej.2020.126444
    [84] WANG L, XIAO X, LIU E, et al. Fabrication of superhydrophobic needle-like Ca-P coating with anti-fouling and anti-corrosion properties on AZ31 magnesium alloy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,620:126568. doi: 10.1016/j.colsurfa.2021.126568
    [85] ZHANG S, CAO D, XU L, et al. Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,625:126914. doi: 10.1016/j.colsurfa.2021.126914
    [86] ZHANG Y, FENG Y, MENG X, et al. The study on enhanced superhydrophobicity of magnesium hydroxide corrosion-resistant coating on AZ31B after 8 months[J]. Advanced Engineering Materials,2021,23(4):2001003. doi: 10.1002/adem.202001003
    [87] LI L, LI X, CHEN J, et al. One-step spraying method to construct superhydrophobic magnesium surface with extraordinary robustness and multi-functions[J]. Journal of Magnesium and Alloys,2021,9(2):668-675. doi: 10.1016/j.jma.2020.06.017
    [88] DING C, TAI Y, WANG D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal,2019,357:518-532. doi: 10.1016/j.cej.2018.09.133
    [89] GU R, SHEN J, HAO Q, et al. Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys[J]. Journal of Materials Chemistry B,2021,9(48):9893-9899. doi: 10.1039/D1TB01974K
    [90] LI Q, BAO X, SUN J E, et al. Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion[J]. Journal of Materials Science,2021,56(8):5233-5249. doi: 10.1007/s10853-020-05592-5
    [91] ZHANG J, ZHAO X, WEI J, et al. Superhydrophobic coatings with photothermal self-healing chemical composition and microstructure for efficient corrosion protection of magnesium alloy[J]. Langmuir,2021,37(45):13527-13536. doi: 10.1021/acs.langmuir.1c02355
    [92] 林彦萍, 王庆成, 吕恕位, 等. 超疏水表面材料在生物医学检测领域研究进展[J]. 表面技术, 2022, 51(10):113-127.

    LIN Yanping, WANG Qingcheng, LV Shuwei, et al. Research progress of superhydrophobic surface materials in biomedical detection[J]. Surface Technology,2022,51(10):113-127(in Chinese).
    [93] HAN Y, HAN Y, SUN J, et al. Controllable nanoparticle aggregation through a superhydrophobic laser-induced graphene dynamic system for surface-enhanced Raman scattering detection[J]. ACS Applied Materials & Interfaces,2022,14(2):3504-3514.
    [94] LUO X, PAN R, CAI M, et al. Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sensors and Actuators B: Chemical,2021,326:128826. doi: 10.1016/j.snb.2020.128826
    [95] WANG Y, LIU F, YANG Y, et al. Droplet evaporation-induced analyte concentration toward sensitive biosensing[J]. Materials Chemistry Frontiers,2021,5(15):5639-5652. doi: 10.1039/D1QM00500F
    [96] XU T, XU L P, ZHANG X, et al. Bioinspired superwettable micropatterns for biosensing[J]. Chemical Society Reviews,2019,48(12):3153-3165. doi: 10.1039/C8CS00915E
    [97] HE X, XU T, GU Z, et al. Flexible and superwettable bands as a platform toward sweat sampling and sensing[J]. Analytical Chemistry,2019,91(7):4296-4300. doi: 10.1021/acs.analchem.8b05875
    [98] XIA Y, CHEN H, LI J, et al. Acoustic droplet-assisted superhydrophilic-superhydrophobic microarray platform for high-throughput screening of patient-derived tumor spheroids[J]. ACS Applied Materials & Interfaces,2021,13(20):23489-23501.
    [99] WANG P, HAYASHI T, MENG Q, et al. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode[J]. Small,2017,13(4):1601250. doi: 10.1002/smll.201601250
    [100] LUO J, YU H, LU B, et al. Superhydrophobic biological fluid-repellent surfaces: Mechanisms and applications[J]. Small Methods,2022,6(12):2201106. doi: 10.1002/smtd.202201106
    [101] HAN K, PARK T Y, YONG K, et al. Combinational biomimicking of lotus leaf, mussel, and sandcastle worm for robust superhydrophobic surfaces with biomedical multifunctionality: Antithrombotic, antibiofouling, and tissue closure capabilities[J]. ACS Applied Materials & Interfaces,2019,11(10):9777-9785.
    [102] ZHUO Y, CHENG X, FANG H, et al. Medical gloves modified by a one-minute spraying process with blood-repellent, antibacterial and wound-healing abilities[J]. Biomaterials Science,2022,10(4):939-946. doi: 10.1039/D1BM01212F
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  338
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-05-10
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回