留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大面积全无机钙钛矿太阳电池研究进展

赵航 袁世玉 王一同 李珍珍

赵航, 袁世玉, 王一同, 等. 基于大面积全无机钙钛矿太阳电池研究进展[J]. 复合材料学报, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001
引用本文: 赵航, 袁世玉, 王一同, 等. 基于大面积全无机钙钛矿太阳电池研究进展[J]. 复合材料学报, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001
ZHAO Hang, YUAN Shiyu, WANG Yitong, et al. Research progress on large-area all-inorganic perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001
Citation: ZHAO Hang, YUAN Shiyu, WANG Yitong, et al. Research progress on large-area all-inorganic perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5447-5465. doi: 10.13801/j.cnki.fhclxb.20230607.001

基于大面积全无机钙钛矿太阳电池研究进展

doi: 10.13801/j.cnki.fhclxb.20230607.001
基金项目: 国家自然科学基金青年基金项目(52102247);河北省科学基金青年基金项目(F2022209010);唐山市科技计划项目(21130207C)
详细信息
    通讯作者:

    李珍珍,博士,副教授,硕士生导师,研究方向为钙钛矿材料与器件 E-mail: zhenlzz@163.com

  • 中图分类号: TM914.4+2;TB332

Research progress on large-area all-inorganic perovskite solar cells

Funds: National Natural Science Foundation of China Youth Fund Project (52102247); Hebei Science Foundation Youth Fund Project (F2022209010); Tangshan Science and Technology Plan Project (21130207C)
  • 摘要: 近年,全无机钙钛矿太阳电池因其具有优良的光电性能及优异的热稳定性成为光伏领域的关注热点之一。该类电池现获得了21.15%的光电转换效率(PCE),并且还有望得到进一步地提高。然而,目前获得高效率全无机钙钛矿电池的有效面积都相对较小,多数处于0.1 cm2水平,大面积全无机钙钛矿太阳电池的PCE会因有效面积的增加而大幅降低。而大面积电池的制备对于全无机钙钛矿太阳电池的商业化应用极其重要。为了让全无机钙钛矿类材料在光伏领域上得到更好地应用,对全无机钙钛矿构建多组分复合材料结构及制备工艺调整是最简单而有效的方法。本文针对目前大面积全无机钙钛矿太阳电池进行系统综述,对较大面积的全无机钙钛矿太阳电池已取得的成果进行总结。针对目前大面积全无机钙钛矿太阳电池所处现状进行分析,并且对可制备大面积钙钛矿太阳电池的工艺及电池性能优化策略进行了系统性的归纳,最后对其领域未来发展趋势进行了展望。

     

  • 图  1  典型三维全无机钙钛矿晶体结构

    Figure  1.  Typical three-dimensional all-inorganic perovskite crystal structure diagram

    图  2  (a) 一步旋涂法制备CsPbI3钙钛矿太阳电池;(b) 两步旋涂法制备CsPbI3钙钛矿太阳电池

    Figure  2.  (a) Preparation of CsPbI3 perovskite solar cells by one-step spin coating method; (b) Preparation of CsPbI3 perovskite solar cells by two-step spin coating method

    图  3  PbBr2薄膜和CsPbBr3薄膜的水基喷雾辅助生长策略和形貌特征的说明:(a) 通过水基喷雾辅助生长策略制备CsPbBr3薄膜;(b) PbBr2薄膜的SEM图像;((c)~(g)) 分别使用30 μL、60 μL、90 μL、120 μL和150 μL的CsBr/H2O 制备出CsPbBr3薄膜的SEM图像[80]

    Figure  3.  Water-based spray-assisted growth strategy and morphology of PbBr2 and CsPbBr3 thin films: (a) CsPbBr3 films prepared by a water-based spray-assisted growth strategy; (b) SEM image of PbBr2 film; ((c)-(g)) SEM images of CsPbBr3 thin films prepared by using 30 μL, 60 μL, 90 μL, 120 μL and 150 μL CsBr/H2O, respectively[80]

    DMF—N, N-dimethylformamide

    图  4  狭缝式涂布过程的描述图:(a) 片对片;(b) 卷对卷[60]

    Figure  4.  Description of slit coating process: (a) Piece to piece; (b) Volume to volume [60]

    图  5  旋涂的SnOx膜(a)、溅射的SnOx膜(b)和溅射的Ga(5%)-SnOx膜(c)的顶视图SEM图像;沉积在旋涂的SnOx膜(d)、溅射的SnOx膜(e)和溅射的Ga(5%)-SnOx膜(f)上的CsPbBr3膜的顶视图SEM图像[85]

    Figure  5.  Top view SEM images of spin-coated SnOx film (a), sputtered SnOx film (b) and sputtered Ga(5%)-SnOx film (c); Top-view SEM images of CsPbBr3 films deposited on spin-coated SnOx film (d), sputtered SnOx film (e) and sputtered Ga(5%)-SnOx film (f)[85]

    图  6  ((a), (d), (g)) 沉积态CsPbBr3薄膜表面和横截面SEM图像;((b), (e), (h)) 400℃的CsPbBr3薄膜表面和横截面SEM图像;((c), (f), (i)) 500℃退火的CsPbBr3薄膜表面和横截面SEM图像;(j) 双源真空蒸发沉积制备CsPbBr3全无机钙钛矿薄膜;(k) CsPbBr3全无机钙钛矿太阳电池的光电转换效率 (PCE)和面积[16]

    Figure  6.  ((a), (d), (g)) SEM images of the surface and cross-section of the deposited CsPbBr3 film; ((b), (e), (h)) SEM images of the surface and cross-section of the CsPbBr3 film at 400℃; ((c), (f), (i)) SEM images of the surface and cross-section of the CsPbBr3 film annealed at 500℃; (j) CsPbBr3 all-inorganic perovskite film prepared by dual-source vacuum evaporation deposition; (k) Photo-voltaic conversion efficiency (PCE) and area of CsPbBr3 all-inorganic perovskite solar cell[16]

    图  7  (a) 顺序蒸发技术制备CsPbBr3钙钛矿的示意图;(b) 制备的不同前体厚度比 (r)的溴化铯铅薄膜的数码相机图像;(c) 不同r值下CsPb2Br5相到CsPbBr3相再到Cs4PbBr6相的晶体结构转变示意图(底部的箭头表示相变过程)[101]

    Figure  7.  (a) Schematic diagram of CsPbBr3 perovskite prepared by sequential evaporation technique; (b) Digital camera images of cesium lead bromide films with different precursor thickness ratios (r) were prepared; (c) Crystal structure transition diagram of CsPb2Br5 phase to CsPbBr3 phase to Cs4PbBr6 phase under different r values (Arrow at the bottom represents the phase transition process)[101]

    图  8  (a) 蒸发室示意图;(b) 蒸发的CsPbI3薄膜的照片(观察到两个明显不同的区域:黄色、棕色);(c) XRF测量的[Cs]/[Pb]原子比是垂直于相界测量的位置的函数(背景中的黄色和棕色相标有颜色)[103]

    Figure  8.  (a) Schematic diagram of the evaporation chamber; (b) Photo of the evaporated CsPbI3 film (Two distinct regions can be observed: One yellow, one brown); (c) [Cs]/[Pb] atomic ratio measured by XRF is a function of the position perpendicular to the phase boundary measurement (Yellow and brown phases in the background are colored)[103]

    图  9  (a) CsPbBr3薄膜单源真空热蒸发沉积装置示意图;(b) 典型沉积CsPbBr3薄膜样品的照片;(c)从350到850 nm不同厚度沉积的CsPbBr3薄膜的表面SEM图像[104]

    Figure  9.  (a) Schematic diagram of a single-source vacuum thermal evaporation deposition device for CsPbBr3 thin film; (b) Photos of typical deposited CsPbBr3 thin film samples; (c) SEM images of the surface of CsPbBr3 films deposited at different thicknesses from 350 to 850 nm[104]

    表  1  小面积(<0.1 cm2)全无机钙钛矿太阳电池的转换效率及其参数

    Table  1.   Conversion efficiency and parameters of small area (< 0.1 cm2) all-inorganic perovskite solar cells

    YearChart cell typeEfficiency/%Area/cm2Ref.
    2017 ITO/Ca/C60/CsPbI3/TAPC/TAPC:MoO3/Ag 9.40 0.051 [14]
    2017 FTO/TiO2/AX-CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 13.34 0.058 [15]
    2018 FTO/c-TiO2/CsPbBr3/Spiro-OMeTAD/Au 6.95 0.09 [16]
    2018 FTO/TiO2/CsPbBrI2/P3 HT/Au 12.02 0.05 [17]
    2018 FTO/TiO2/CsPbBrI2 with DMSO-adducts/Spiro-OMeTAD/Au 14.78 0.09 [18]
    2018 FTO/c-TiO2/m-TiO2/
    PVP-CsPbI3/Spiro-OMeTAD/Au
    10.74 0.09 [19]
    2019 FTO/TiO2(CsBr)/CsPbBr2I/Carbon 10.71 0.09 [20]
    2019 FTO/c-TiO2/m-TiO2/
    2%Ca2+-doped γ-CsPbI3/Spiro-OMeTAD/Au
    9.20 0.09 [21]
    2019 FTO/c-TiO2/
    CEG1.0MAICsPbI3/P3 HT/Au
    14.10 0.0919 [22]
    2019 FTO/TiO2/Pb(SCN)2:2%-CsPbI3/PTAA/Au 17.04 0.09 [23]
    2020 FTO/TiO2/BAI:CsPbBr2I/
    Spiro-OMeTAD/Au
    10.78 0.09 [24]
    2020 FTO/c-TiO2/mp-TiO2/2-ThPy-CsPbI2Br/Spiro-OMeTAD/Ag 12.69 0.09 [25]
    2020 FTO/TiO2/NSs/CsPbBrI2/NSs/
    Spiro-OMeTAD/Au
    16.65 0.09 [26]
    2020 FTO/c-TiO2/mp-TiO2/
    Cs0.99Rb0.01PbI2Br/P3 HT/Au
    17.16 0.09 [27]
    2021 FTO/bl-TiO2/
    Graded CsPbBrxI3−x/PTAA/Au
    16.81 0.096 [28]
    2021 FTO/c-TiO2/SDMS-CsPbI3/
    Spiro-OMeTAD/Au
    20.37 0.094 [29]
    2022 FTO/TiO2/CsPbI2Br/BN-DHI/Carbon 14.14 0.075 [30]
    2022 ITO/SnO2/CsPbI2Br/PCDA/Au 11.01 0.055 [31]
    2022 ITO/NiMgLiO/CsPbI2Br/E-CdS/Au 15.04 0.09 [32]
    2022 FTO/TiO2/Gly-X:CsPbI2Br/Spiro-OMeTAD/Au 17.26 0.09 [33]
    2023 ITO/NiOx/CsPbI2.85Br0.15/PCBM/BCP/Ag 20.38 0.08875 [34]
    2023 FTO/TiO2/γ-CsPbI3/Spiro-OMeTAD/Au 21.15 0.09 [8]
    Notes: ITO—Indium tin oxide; TAPC—4, 4′-cyclohexylidenebis[N, N-bis(4-methylphenyl)benzenamine]; FTO—Fluorine-doped tin oxide; AX—A-site cation halide salt; QDs—Quantum dot films; Spiro-OMeTAD—2, 2', 7, 7'-tetrakis[N, N-di(4-methoxyphenyl)amino]-9, 9'-spirobifluorene; c-TiO2—Crystalline titanium dioxide; P3 HT—Poly (3-hexylthiophene-2,5-diyl); DMSO—Dimethylsulfoxide; m-TiO2—Mesoporous titanium dioxide; PVP—Poly-vinylpyrrolidone; CEG—Cation exchange growth; MAI—Methylammonium iodide; PTAA—Poly[bis(4-phenyl) (2, 4, 6-trimethylphenyl)amine; BAI—n-butylammonium iodide; 2-ThPy—2-(2′-thienyl)pyridine; NSs—Nanosheets; mp-TiO2—Mesoporous titanium dioxide; bl-TiO2—Black titanium dioxide; SDMS—Stabilized-doped multi-cation single-crystalline; BN-DHI—2-bromonaphthalene-dynamic healing interface; PCDA—Poly[(9-alkyl-9H-carbazole-2, 7-diyl)-co-(2, 4-dimethylaniline-N, N-diyl)]; E-CdS—Electrodeposited cadmium sulfide; Gly-X—Glycine halides; PCBM—Phenyl-C61-butyric acid methyl ester; BCP—Bathocuproine.
    下载: 导出CSV

    表  2  大面积(≥0.1 cm2)全无机钙钛矿太阳电池的转换效率及参数

    Table  2.   Conversion efficiency and parameters of large area (≥ 0.1 cm2) all-inorganic perovskite solar cells

    YearChart cell typeEfficiency/%Area/cm2Ref.
    2016 FTO/c-TiO2/CsPbBr2I/Au 4.70 0.159 [35]
    2017 FTO/c-TiO2/CsPbBrI2/P3 HT/Au 6.70 0.159 [36]
    2017 FTO/c-TiO2/CsPbBrI2/P3 HT/Au 5.50 1.20 [36]
    2017 FTO/c-TiO2/mp-TiO2/
    CsPb0.98Sr0.02BrI2/P3 HT/Au
    10.80 0.159 [37]
    2017 FTO/c-TiO2/
    Cs0.925K0.075PbBrI2/Spiro-OMeTAD/Au
    10.00 0.15 [38]
    2017 FTO/c-TiO2/
    CsPbI3·xEDAPbI4/Spiro-OMeTAD/Ag
    11.80 0.12 [39]
    2018 FTO/c-TiO2/CsPbBr3/Spiro-OMeTAD/Au 5.37 1.00 [16]
    2018 FTO/c-TiO2/m-TiO2/
    Cs0.91Rb0.09PbBr3/Carbon
    7.07 >1.00 [40]
    2017 ITO/SnO2/C60/
    CsPb0.75Sn0.25Br2I/Spiro-OMeTAD/Au
    11.53 0.10 [41]
    2018 FTO/TiO2/CsPbBrI2 with
    DMSO-adducts/Spiro-OMeTAD/Au
    12.80 0.49 [18]
    2018 FTO/TiO2/CsPbBrI2 with
    DMSO-adducts/Spiro-OMeTAD/Au
    11.61 1.00 [18]
    2018 ITO/SnO2/PEA-CsPbI3/Spiro-OMeTAD/Au 12.41 81 [42]
    2019 FTO/TiO2/SmBr3/CsPbBr2I/PTAA/Au 10.88 2.00 [43]
    2019 FTO/bl-TiO2/Sn doped CsPbI3/CuSCN/Au 3.09 0.25 [44]
    2020 ITO/SnO2/MgO/CsPbBr2I/
    Spiro-OMeTAD/Ag
    11.04 0.11 [45]
    2020 FTO/SnO2/PANI-CsPbBrI2/Carbon 13.52 0.10 [46]
    2021 FTO/bl-TiO2/Graded CsPbBrxI3−x/PTAA/Au 13.82 112 [28]
    2021 ITO/ZnO/SnO2/
    PEACl-KBr-CsPbI2Br/
    Spiro-OMeTAD/MoO3/Ag
    16.90 0.12 [47]
    2022 FTO/TiO2/GdCl3:CsPbI2Br/
    Spiro-OMeTAD/Au
    16.24 0.1 [48]
    2022 FTO/TiO2/CsPbI3/Spiro-MeOTAD/Au 20.06 1.0 [49]
    2023 FTO/TiO2/CsPbI3−xBrx/Spiro-OMeTAD/Au 17.21 1.0 [50]
    2022 ITO/PTAA/CsPbI3/OMXene-CsPbI3 composite/CPTA/BCP/Ag 14.64 25 [51]
    2023 FTO/TiO2/CsPbI3/PCBM/Carbon 16.33 25 [52]
    2023 FTO/TiO2/CsPbI3/Spiro-OMeTAD/Au 16.60 12 [53]
    Notes: CsPbI3·xEDAPbI4—Cesium lead iodide and ethylenediammonium lead iodide perovskite; PEA—Phenylethylammonium; PANI—Polymer additive polyaniline; PEACl—Phenylethylammonium chloride; OMXene—Oxygen-mediated MXene.
    下载: 导出CSV

    表  3  大面积全无机钙钛矿薄膜制备方法

    Table  3.   Preparation method of large area all-inorganic perovskite film

    Preparation methodAdvantageDisadvantageRef.Preparation methodAdvantageDisadvantageRef.
    Spin coating methodThe film is relatively uniform and the thickness of the film is controllable
    Low crystal structure and purity[58]
    Chemical vapor deposition method
    High purity and good uniformity of thin filmsComplex equipment, high cost, and high requirements for reaction conditions[63]
    Spray coating methodSuitable for complex substrate materials and non flat surfaces
    Easily prone to defects and requires high solvent selectivity[59]Sequential evaporation methodGood precision control, film uniformity, and repeatability
    High equipment requirements and interface defects[64]
    Slot-die coating method
    High throughput and
    low cost
    Liquidity limitations may limit the thickness and uniformity of the film[60]Co-evaporation methodGood uniformity and high repeatability of the film
    High requirements for parameters such as evaporation rate and distance between evaporation sources[65]
    Blade-coating methodSimple, low-cost,
    suitable for large
    area substrates
    Limitations on film thickness and uniformity[58]Flash evaporation methodFast, simple, and
    efficient
    High selectivity for solvents[66]
    Ink-jet
    printing method
    High precision and flexibilityInk jet head blockage and droplet size control[61]Vacuum thermal evaporation method
    The process of paper
    cup thin film does not require solvents, and
    high purity thin film deposition

    Vacuum equipment is relatively complex and has a high investment cost[67]
    Vacuum
    flash-assisted solution method
    High speed, simple, suitable for various materials and
    substrates
    Complex equipment and high cost[62]Multi-flow air knife methodHigh speed coating,
    good uniformity,
    coating saving, and
    wide applicability
    Complex equipment, difficult process control, not suitable for high viscosity coatings[68]
    下载: 导出CSV
  • [1] LI J, XIA R, QI W, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization[J]. Journal of Power Sources,2021,485:229313. doi: 10.1016/j.jpowsour.2020.229313
    [2] YU J, LIU G, CHEN C, et al. Perovskite CsPbBr3 crystals: Growth and applications[J]. Journal of Materials Chemistry C,2020,8(19):6326-6341. doi: 10.1039/D0TC00922A
    [3] CHENG Z, LIN J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm,2010,12(10):2646-2662. doi: 10.1039/c001929a
    [4] FENG L M, JIANG L Q, ZHU M, et al. Formability of ABO3 cubic perovskites[J]. Journal of Physics and Chemistry of Solids,2008,69(4):967-974. doi: 10.1016/j.jpcs.2007.11.007
    [5] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances,2019,5(2):eaav0693. doi: 10.1126/sciadv.aav0693
    [6] LI C, LU X, DING W, et al. Formability of ABX3 (X= F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B: Structural Science,2008,64(6):702-707. doi: 10.1107/S0108768108032734
    [7] YANG Z, BABU B H, WU S, et al. Review on practical interface engineering of perovskite solar cells: From efficiency to stability[J]. Solar RRL,2020,4(2):1900257. doi: 10.1002/solr.201900257
    [8] WANG J, CHE Y, DUAN Y, et al. 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand[J]. Advanced Materials,2023,35(12):2210223. doi: 10.1002/adma.202210223
    [9] SON D Y, IM J H, KIM H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system[J]. The Journal of Physical Chemistry C,2014,118(30):16567-16573. doi: 10.1021/jp412407j
    [10] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398. doi: 10.1038/nature12509
    [11] CHOI J J, YANG X, NORMAN Z M, et al. Structure of methylammonium lead iodide within mesoporous titanium dioxide: Active material in high-performance perovskite solar cells[J]. Nano Letters,2014,14(1):127-133. doi: 10.1021/nl403514x
    [12] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science,2015,348(6240):1234-1237. doi: 10.1126/science.aaa9272
    [13] EPERON G E, PATERNO G M, SUTTON R J, et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A,2015,3(39):19688-19695. doi: 10.1039/C5TA06398A
    [14] CHEN C Y, LIN H Y, CHIANG K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%[J]. Advanced Materials,2017,29(12):1605290. doi: 10.1002/adma.201605290
    [15] SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science Advances,2017,3(10):eaao4204. doi: 10.1126/sciadv.aao4204
    [16] LEI J, GAO F, WANG H, et al. Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation[J]. Solar Energy Materials and Solar Cells,2018,187:1-8. doi: 10.1016/j.solmat.2018.07.009
    [17] ZENG Q, ZHANG X, FENG X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Advanced Materials,2018,30(9):1705393. doi: 10.1002/adma.201705393
    [18] YIN G, ZHAO H, JIANG H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency[J]. Advanced Functional Materials,2018,28(39):1803269. doi: 10.1002/adfm.201803269
    [19] LI B, ZHANG Y, FU L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells[J]. Nature Communications,2018,9(1):1076. doi: 10.1038/s41467-018-03169-0
    [20] ZHU W, ZHANG Z, CHAI W, et al. Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr2 perovskite solar cells[J]. ChemSusChem,2019,12(10):2318-2325. doi: 10.1002/cssc.201900611
    [21] ZHAO H, XU J, ZHOU S, et al. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells[J]. Advanced Functional Materials,2019,29(27):1808986.
    [22] LAU C F J, WANG Z, SAKAI N, et al. Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process[J]. Advanced Energy Materials,2019,9(36):1901685. doi: 10.1002/aenm.201901685
    [23] YAO Z, JIN Z, ZHANG X, et al. Pseudohalide (SCN)-doped CsPbI3 for high-performance solar cells[J]. Journal of Materials Chemistry C,2019,7(44):13736-13742. doi: 10.1039/C9TC04851K
    [24] ZHANG C, WANG K, WANG Y, et al. Low-temperature crystallization of CsPbIBr2 perovskite for high performance solar cells[J]. Solar RRL,2020,4(10):2000254. doi: 10.1002/solr.202000254
    [25] LI H, YIN L. Efficient bidentate molecules passivation strategy for high-performance and stable inorganic CsPbI2Br perovskite solar cells[J]. Solar RRL,2020,4(10):2000268. doi: 10.1002/solr.202000268
    [26] YANG S, LIU W, HAN Y, et al. 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability[J]. Advanced Energy Materials,2020,10(46):2002882. doi: 10.1002/aenm.202002882
    [27] PATIL J V, MALI S S, HONG C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency[J]. Solar RRL,2020,4(7):2000164. doi: 10.1002/solr.202000164
    [28] HEO J H, ZHANG F, XIAO C, et al. Efficient and stable graded CsPbI3−xBrx perovskite solar cells and submodules by orthogonal processable spray coating[J]. Joule,2021,5(2):481-494. doi: 10.1016/j.joule.2020.12.010
    [29] YOON S M, MIN H, KIM J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule,2021,5(1):183-196. doi: 10.1016/j.joule.2020.11.020
    [30] GUO Q, DUAN J, ZHANG J, et al. Universal dynamic liquid interface for healing perovskite solar cells[J]. Advanced Materials,2022,34(26):2202301. doi: 10.1002/adma.202202301
    [31] JEONG W J, HA S R, JANG J W, et al. Simple-structured low-cost dopant-free hole-transporting polymers for high-stability CsPbI2Br perovskite solar cells[J]. ACS Applied Materials & Interfaces,2022,14(11):13400-13409.
    [32] CHEN W, SUN Z, GUAN X, et al. A general low-temperature strategy to prepare high-quality metal sulfides charge-transporting layers for all-inorganic CsPbI2Br perovskite solar cells[J]. Solar RRL,2022,6(7):2200098. doi: 10.1002/solr.202200098
    [33] XU J, CUI J, YANG S, et al. Stable high-efficiency CsPbI2Br solar cells by designed passivation using multifunctional 2D perovskite[J]. Advanced Functional Materials,2022,32(33):2202829. doi: 10.1002/adfm.202202829
    [34] WANG S, WANG P, SHI B, et al. Inorganic perovskite surface reconfiguration for stable inverted solar cell with 20.38% efficiency and its application in tandem devices[J]. Advanced Materials,2023,35(28):2300581. doi: 10.1002/adma.202300581
    [35] MA Q, HUANG S, WEN X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation[J]. Advanced Energy Materials,2016,6(7):1502202. doi: 10.1002/aenm.201502202
    [36] MA Q S, HUANG S J, CHEN S, et al. The effect of stoichiometry on the stability of inorganic cesium lead mixed-halide perovskites solar cells[J]. The Journal of Physical Chemistry C,2017,121(36):19642-19649. doi: 10.1021/acs.jpcc.7b06268
    [37] LAU C F J, ZHANG M, DENG X, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells[J]. ACS Energy Letters,2017,2(10):2319-2325. doi: 10.1021/acsenergylett.7b00751
    [38] NAM J K, CHAI S U, CHA W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells[J]. Nano Letters,2017,17(3):2028-2033. doi: 10.1021/acs.nanolett.7b00050
    [39] ZHANG T, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances,2017,3(9):e1700841. doi: 10.1126/sciadv.1700841
    [40] LI Y, DUAN J, YUAN H, et al. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells[J]. Solar RRL,2018,2(10):1800164. doi: 10.1002/solr.201800164
    [41] LIANG J, ZHAO P, WANG C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society,2017,139(40):14009-14012. doi: 10.1021/jacs.7b07949
    [42] JIANG Y, YUAN J, NI Y, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics[J]. Joule,2018,2(7):1356-1368. doi: 10.1016/j.joule.2018.05.004
    [43] SUBHANI W S, WANG K, DU M, et al. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells[J]. Advanced Energy Materials,2019,9(21):1803785. doi: 10.1002/aenm.201803785
    [44] MURUGADOSS G, THANGAMUTHU R. Metals doped cesium based all inorganic perovskite solar cells: Investigations on structural, morphological and optical properties[J]. Solar Energy,2019,179:151-163. doi: 10.1016/j.solener.2018.12.065
    [45] WANG H, LI H, CAO S, et al. Interface modulator of ultrathin magnesium oxide for low-temperature-processed inorganic CsPbIBr2 perovskite solar cells with efficiency over 11%[J]. Solar RRL,2020,4(9):2000226. doi: 10.1002/solr.202000226
    [46] LIU C, HE J, WU M, et al. All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport[J]. Solar RRL,2020,4(7):2000016. doi: 10.1002/solr.202000016
    [47] ZHOU D, HUANG J, LIU J, et al. Dual passivation strategy for high efficiency inorganic CsPbI2Br solar cells[J]. Solar RRL,2021,5(5):2100112.
    [48] PU X, YANG J, WANG T, et al. Gadolinium-incorporated CsPbI2Br for boosting efficiency and long-term stability of all-inorganic perovskite solar cells[J]. Journal of Energy Chemistry,2022,70:9-17. doi: 10.1016/j.jechem.2022.02.004
    [49] YU G, JIANG K J, GU W M, et al. Vacuum-assisted thermal annealing of CsPbI3 for highly stable and efficient inorganic perovskite solar cells[J]. Angewandte Chemie International Edition,2022,61(27):e202203778.
    [50] ZHANG H, XIANG W, ZUO X, et al. Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells[J]. Angewandte Chemie,2023,135(6):e202216634.
    [51] HEO J H, ZHANG F, PARK J K, et al. Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable pin-structured CsPbI3 perovskite solar cells[J]. Joule,2022,6(7):1672-1688. doi: 10.1016/j.joule.2022.05.013
    [52] ZHANG Q, LIU H, TAN X, et al. Suppressing "Coffee ring effect" to deposit high-quality CsPbI3 perovskite films by drop casting[J]. Chemical Engineering Journal,2023,454:140147. doi: 10.1016/j.cej.2022.140147
    [53] TAN S, TAN C, CUI Y, et al. Constructing interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules[J]. Advanced Materials,2023,35(28):2301879. doi: 10.1002/adma.202301879
    [54] FASSL P, TERNES S, LAMI V, et al. Effect of crystal grain orientation on the rate of ionic transport in perovskite polycrystalline thin films[J]. ACS Applied Materials & Interfaces,2018,11(2):2490-2499.
    [55] ZHOU Y, LUO X, YANG J, et al. Application of quantum dot interface modification layer in perovskite solar cells: Progress and perspectives[J]. Nanomaterials,2022,12(12):2102. doi: 10.3390/nano12122102
    [56] ZHENG L, ZHANG D, MA Y, et al. Morphology control of the perovskite films for efficient solar cells[J]. Dalton Transactions,2015,44(23):10582-10593. doi: 10.1039/C4DT03869J
    [57] KIM J, YUN J S, CHO Y, et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells[J]. ACS Energy Letters,2017,2(9):1978-1984. doi: 10.1021/acsenergylett.7b00573
    [58] DONG C, HAN X, ZHAO Y, et al. A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell[J]. Solar RRL,2018,2(9):1800139. doi: 10.1002/solr.201800139
    [59] YU Y T, YANG S H, CHOU L H, et al. One-step spray-coated all-inorganic CsPbI2Br perovskite solar cells[J]. ACS Applied Energy Materials,2021,4(6):5466-5474. doi: 10.1021/acsaem.1c00054
    [60] SWARTWOUT R, HOERANTNER M T, BULOVIC V. Scalable deposition methods for large-area production of perovskite thin films[J]. Energy & Environmental Materials,2019,2(2):119-145.
    [61] HAMUKWAYA S L, HAO H, ZHAO Z, et al. A review of recent developments in preparation methods for large-area perovskite solar cells[J]. Coatings,2022,12(2):252. doi: 10.3390/coatings12020252
    [62] LI X, BI D, YI C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science,2016,353(6294):58-62. doi: 10.1126/science.aaf8060
    [63] AAMIR M, SHER M, KHAN M D, et al. Controlled synthesis of all inorganic CsPbBr2I perovskite by non-template and aerosol assisted chemical vapour deposition[J]. Materials Letters,2017,190:244-247. doi: 10.1016/j.matlet.2017.01.013
    [64] ZHANG Y, LUO L, HUA J, et al. Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method[J]. Materials Science in Semiconductor Processing,2019,98:39-43. doi: 10.1016/j.mssp.2019.03.021
    [65] ZHANG L, YUAN F, DONG H, et al. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability[J]. ACS Applied Materials & Interfaces,2018,10(47):40661-40671.
    [66] ULLAH S, WANG J, YANG P, et al. Evaporation deposition strategies for all-inorganic CsPb(I1−xBrx)3 perovskite solar cells: Recent advances and perspectives[J]. Solar RRL,2021,5(8):2100172. doi: 10.1002/solr.202100172
    [67] PARK C G, CHOI W G, NA S, et al. All-inorganic perovskite CsPbI2Br through co-evaporation for planar heterojunction solar cells[J]. Electronic Materials Letters,2019,15:56-60. doi: 10.1007/s13391-018-0095-1
    [68] GAO L, YANG G. Organic-inorganic halide perovskites: From crystallization of polycrystalline films to solar cell applications[J]. Solar RRL,2020,4(2):1900200. doi: 10.1002/solr.201900200
    [69] WANG Q, ZHENG X, DENG Y, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule,2017,1(2):371-382. doi: 10.1016/j.joule.2017.07.017
    [70] SHIN D, KANG D, JEONG J, et al. Unraveling the charge extraction mechanism of perovskite solar cells fabricated with two-step spin coating: Interfacial energetics between methylammonium lead iodide and C60[J]. The Journal of Physical Chemistry Letters,2017,8(21):5423-5429. doi: 10.1021/acs.jpclett.7b02562
    [71] LARSON R G, REHG T J. Spin coating[M]//Liquid Film Coating: Scientific Principles and Their Technological Implications. Berlin: Springer, 1997: 709-734.
    [72] XU L, KARUNAKARAN R G, GUO J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces,2012,4(2):1118-1125.
    [73] LEE J W, PARK N G. Two-step deposition method for high-efficiency perovskite solar cells[J]. MRS Bulletin,2015,40(8):654-659. doi: 10.1557/mrs.2015.166
    [74] SHALAN A E. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells[J]. Materials Advances,2020,1(3):292-309. doi: 10.1039/D0MA00128G
    [75] DAI X, XU K, WEI F. Recent progress in perovskite solar cells: The perovskite layer[J]. Beilstein Journal of Nanotechnology,2020,11(1):51-60.
    [76] TIAN J, WANG J, XUE Q, et al. Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells[J]. Advanced Functional Materials,2020,30(28):2001764. doi: 10.1002/adfm.202001764
    [77] SILVA FILHO J M C, ERMAKOV V A, MARQUES F C. Perovskite thin film synthesised from sputtered lead sulphide[J]. Scientific Reports,2018,8(1):1563. doi: 10.1038/s41598-018-19746-8
    [78] ZHAO Y, MA F, GAO F, et al. Research progress in large-area perovskite solar cells[J]. Photonics Research,2020,8(7):A1-A15. doi: 10.1364/PRJ.392996
    [79] DAS S, YANG B, GU G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing[J]. ACS Photonics,2015,2(6):680-686. doi: 10.1021/acsphotonics.5b00119
    [80] ZHANG Z, BA Y, CHEN D, et al. Generic water-based spray-assisted growth for scalable high-efficiency carbon-electrode all-inorganic perovskite solar cells[J]. iScience,2021,24(11):103365. doi: 10.1016/j.isci.2021.103365
    [81] BING J, HUANG S, HO-BAILLIE A W Y. A review on halide perovskite film formation by sequential solution processing for solar cell applications[J]. Energy Technology,2020,8(4):1901114. doi: 10.1002/ente.201901114
    [82] DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes[J]. AIChE Journal,2016,62(7):2508-2524. doi: 10.1002/aic.15268
    [83] GAO L, HUANG K, LONG C, et al. Fully slot-die-coated perovskite solar cells in ambient condition[J]. Applied Physics A,2020,126:1-7. doi: 10.1007/s00339-019-3176-6
    [84] WU W Q, YANG Z, RUDD P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells[J]. Science Advances,2019,5(3):eaav8925. doi: 10.1126/sciadv.aav8925
    [85] ZHAO Y, DENG Q, GUO R, et al. Sputtered Ga-doped SnOx electron transport layer for large-area all-inorganic perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(49):54904-54915.
    [86] RAZZA S, DI GIACOMO F, MATTEOCCI F, et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J]. Journal of Power Sources,2015,277:286-291. doi: 10.1016/j.jpowsour.2014.12.008
    [87] LIANG C, LI P, GU H, et al. One-step inkjet printed perovskite in air for efficient light harvesting[J]. Solar RRL,2018,2(2):1700217. doi: 10.1002/solr.201700217
    [88] LI P, LIANG C, BAO B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J]. Nano Energy,2018,46:203-211. doi: 10.1016/j.nanoen.2018.01.049
    [89] ZHANG L, CHEN S, ZENG J, et al. Inkjet-printing controlled phase evolution boosts the efficiency of hole transport material free and carbon-based CsPbBr3 perovskite solar cells exceeding 9%[J]. Energy & Environmental Materials,2022:e12543. doi: 10.1002/eem2.12543
    [90] LI Z, LI P, CHEN G, et al. Ink engineering of inkjet printing perovskite[J]. ACS Applied Materials & Interfaces,2020,12(35):39082-39091.
    [91] LEE J W, KIM H S, PARK N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Accounts of Chemical Research,2016,49(2):311-319. doi: 10.1021/acs.accounts.5b00440
    [92] SALHI B, WUDIL Y S, HOSSAIN M K, et al. Review of recent developments and persistent challenges in stability of perovskite solar cells[J]. Renewable and Sustainable Energy Reviews,2018,90:210-222. doi: 10.1016/j.rser.2018.03.058
    [93] AVILA J, MOMBLONA C, BOIX P P, et al. Vapor-deposited perovskites: The route to high-performance solar cell production?[J]. Joule,2017,1(3):431-442. doi: 10.1016/j.joule.2017.07.014
    [94] PINSUWAN K, BOONTHUM C, SUPASAI T, et al. Solar perovskite thin films with enhanced mechanical, thermal, UV, and moisture stability via vacuum-assisted deposition[J]. Journal of Materials Science,2020,55(8):3484-3494. doi: 10.1007/s10853-019-04199-9
    [95] TEUSCHER J, ULIANOV A, MUNTENER O, et al. Control and study of the stoichiometry in evaporated perovskite solar cells[J]. ChemSusChem,2015,8(22):3847-3852. doi: 10.1002/cssc.201500972
    [96] CHEN X, CAO H, YU H, et al. Large-area, high-quality organic-inorganic hybrid perovskite thin films via a controlled vapor-solid reaction[J]. Journal of Materials Chemistry A,2016,4(23):9124-9132. doi: 10.1039/C6TA03180C
    [97] ASSADI M K, BAKHODA S, SAIDUR R, et al. Recent progress in perovskite solar cells[J]. Renewable and Sustainable Energy Reviews,2018,81:2812-2822. doi: 10.1016/j.rser.2017.06.088
    [98] TAVAKOLI M M, GU L, GAO Y, et al. Fabrication of efficient planar perovskite solar cells using a one-step che-mical vapor deposition method[J]. Scientific Reports,2015,5(1):14083. doi: 10.1038/srep14083
    [99] LUO P, LIU Z, XIA W, et al. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions[J]. ACS Applied Materials & Interfaces,2015,7(4):2708-2714.
    [100] LIANG G, LAN H, FAN P, et al. Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation[J]. Coatings,2018,8(8):256. doi: 10.3390/coatings8080256
    [101] LIU X, TAN X, LIU Z, et al. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells[J]. Journal of Power Sources,2019,443:227269. doi: 10.1016/j.jpowsour.2019.227269
    [102] NASI L, CALESTANI D, MEZZADRI F, et al. All-inorganic CsPbBr3 perovskite films prepared by single source thermal ablation[J]. Frontiers in Chemistry,2020,8:313. doi: 10.3389/fchem.2020.00313
    [103] BECKER P, MARQUEZ J A, JUST J, et al. Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation[J]. Advanced Energy Materials,2019,9(22):1900555. doi: 10.1002/aenm.201900555
    [104] LI J, GAO R, GAO F, et al. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation[J]. Journal of Alloys and Compounds,2020,818:152903. doi: 10.1016/j.jallcom.2019.152903
    [105] WANG S, LI X, WU J, et al. Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: A progress review[J]. Current Opinion in Electrochemistry,2018,11:130-140. doi: 10.1016/j.coelec.2018.10.006
    [106] GAO L L, LI C X, LI C J, et al. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air[J]. Journal of Materials Chemistry A,2017,5(4):1548-1557. doi: 10.1039/C6TA09565H
    [107] DENG Y, PENG E, SHAO Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science,2015,8(5):1544-1550.
    [108] ZHOU Y, YANG M, WU W, et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells[J]. Journal of Materials Chemistry A,2015,3(15):8178-8184. doi: 10.1039/C5TA00477B
    [109] COTELLA G, BAKER J, WORSLEY D, et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications[J]. Solar Energy Materials and Solar Cells,2017,159:362-369. doi: 10.1016/j.solmat.2016.09.013
    [110] DING B, GAO L, LIANG L, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method[J]. ACS Applied Materials & Interfaces,2016,8(31):20067-20073.
    [111] WANG H, SUN J, GU Y, et al. Solvent-engineering-processed CsPbIBr2 inorganic perovskite solar cells with efficiency of ~11%[J]. Solar Energy Materials and Solar Cells,2022,238:111640. doi: 10.1016/j.solmat.2022.111640
    [112] ZHANG Z, HE F, ZHU W, et al. Suppressing intrinsic self-doping of CsPbIBr2 films for high-performance all-inorganic, carbon-based perovskite solar cells[J]. Sustainable Energy & Fuels,2020,4(9):4506-4515.
    [113] PARK N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells[J]. Advanced Energy Materials,2020,10(13):1903106. doi: 10.1002/aenm.201903106
    [114] CHEN Y, ZHANG L, ZHANG Y, et al. Large-area perovskite solar cells—A review of recent progress and issues[J]. RSC Advances,2018,8(19):10489-10508. doi: 10.1039/C8RA00384J
    [115] VAYNZOF Y. The future of perovskite photovoltaics—Thermal evaporation or solution processing?[J]. Advanced Energy Materials,2020,10(48):2003073. doi: 10.1002/aenm.202003073
    [116] DING J, DUAN J, GUO C, et al. Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering[J]. Journal of Materials Chemistry A,2018,6(44):21999-22004. doi: 10.1039/C8TA02522C
    [117] YU B, SHI J, TAN S, et al. Efficient (> 20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts[J]. Angewandte Chemie International Edition,2021,60(24):13436-13443. doi: 10.1002/anie.202102466
    [118] HISHIMONE P N, NAGAI H, SATO M. Methods of fabricating thin films for energy materials and devices[M]//Lithium-ion Batteries-Thin Film for Energy Materials and Devices. London: IntechOpen, 2020: 9-30.
    [119] CHEN C L, ZHANG S S, LIU T L, et al. Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl[J]. Rare Metals,2020,39:131-138. doi: 10.1007/s12598-019-01341-z
    [120] LIU W, RAZA H, HU X, et al. Key bottlenecks and distinct contradictions in fast commercialization of perovskite solar cells[J]. Materials Futures,2023,2:012103. doi: 10.1088/2752-5724/acba35
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  801
  • HTML全文浏览量:  730
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-05
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回