留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有三维连续网络结构的聚合物基导热复合材料研究进展

郑舒方 王玉印 郭兰迪 靳玉岭

郑舒方, 王玉印, 郭兰迪, 等. 具有三维连续网络结构的聚合物基导热复合材料研究进展[J]. 复合材料学报, 2023, 40(12): 6528-6544. doi: 10.13801/j.cnki.fhclxb.20230530.004
引用本文: 郑舒方, 王玉印, 郭兰迪, 等. 具有三维连续网络结构的聚合物基导热复合材料研究进展[J]. 复合材料学报, 2023, 40(12): 6528-6544. doi: 10.13801/j.cnki.fhclxb.20230530.004
ZHENG Shufang, WANG Yuyin, GUO Landi, et al. Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6528-6544. doi: 10.13801/j.cnki.fhclxb.20230530.004
Citation: ZHENG Shufang, WANG Yuyin, GUO Landi, et al. Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6528-6544. doi: 10.13801/j.cnki.fhclxb.20230530.004

具有三维连续网络结构的聚合物基导热复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20230530.004
基金项目: 国家自然科学基金(22201099);山东省自然科学基金青年基金(ZR2021 QB204);济宁学院博士科研启动基金(2018 BSZX04)
详细信息
    通讯作者:

    郑舒方,博士,讲师,研究方向为有机/无机杂化纳米功能复合材料设计 E-mail: zhengsf1988@163.com

  • 中图分类号: TB332

Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures

Funds: National Natural Science Foundation of China (22201099); Shandong Provincial Natural Science Foundation Youth Fund (ZR2021 QB204); Doctoral Research Start-up Fund of Jining University (2018 BSZX04)
  • 摘要: 热界面材料可以有效地将高温电子器件的热量快速传递到热管理元件,以缓解电子器件过热而导致的元件寿命恶化的问题。近年来,由聚合物和高导热填料制成的聚合物基复合材料因其密度低、导热性能可调而受到广泛关注。不同于传统的填料随机分散的复合材料,在聚合物基体中构建三维连续网络结构可以显著增加填料/填料接触、降低导热渗透阈值和界面热阻,显著改善复合材料的导热性能。首先,简要分析了聚合物基导热复合材料的导热机制。其次,总结了具有连续网络结构的聚合物基导热复合材料的构筑工艺,主要包括基于三维导热填料网络的预构筑、基于聚合物颗粒/粉末的后加工、基于聚合物纤维/织物的后加工、基于聚合物胶乳的铸膜或絮凝等工艺。再次,系统总结了不同类型的导热填料对聚合物复合材料导热性能的影响,主要包括金属填料、陶瓷填料、碳基填料及其混杂填料等。最后,对具有三维连续网络结构的聚合物基导热复合材料的发展前景进行了展望。

     

  • 图  1  (a) 低填料含量下形成的“海-岛”结构;(b) 高填料含量下形成的热传导路径;(c) 导热阈渗现象;(d) 热弹性系数理论[27]

    Figure  1.  (a) “Sea-island” in low fillers loading; (b) Thermal conduction paths in high fillers loading; (c) Percolation phenomenon; (d) Thermoelastic coefficient theory[27]

    λ—Thermal conductivity coefficient

    图  2  (a) 流化床化学气相沉积(CVD)工艺制备氮化硼纳米粒子(BNNS)/碳纳米管(CNTs)示意图和三维BNNS/CNTs/环氧树脂(EP)复合材料制备示意图;(b) 三维泡沫骨架上沉积的BNNS/CNTs的SEM图像;(c) 三维导热网络结构对BNNS/CNTs/EP复合材料导热系数的增强作用[39]

    Figure  2.  (a) Schematic illustration of the fluidized bed chemical vapor deposition (CVD) process for the fabrication of boron nitride nanoparticles (BNNS)/carbon nanotubes (CNTs) and the preparation process of 3D BNNS/CNTs/epoxy (EP) composie; (b) SEM image of BNNS/CNTs deposited on 3D foam skeleton; (c) Enhancement of 3D network structure on thermal conductivity of BNNS/CNTs/EP composite[39]

    PU—Polyurethane; CNTs15%—Mass fraction (15wt%) of CNTs in BNNS/CNTs samples

    图  3  (a) 具有连续网络结构的(CNT+BN)@聚偏二氟乙烯(PVDF)复合材料制备示意图;(b) 均匀分散的CNT/BN/PVDF复合材料和具有连续网络结构的(CNT+BN)@PVDF复合材料在不同混杂填料配比下的导热系数的对比; (c) (CNT+BN)@PVDF复合材料在不同热压温度下的导热系数变化,插图显示了混杂填料网络形貌[18]

    Figure  3.  (a) Schematic representation showing the preparation of interconnected (CNT+BN)@polyvinylidene fluoride (PVDF) composites; (b) Thermal conductivities of uniformly dispersed CNT/BN/PVDF and interconnected (CNT+BN)@PVDF composites as a function of the volume ratio of hybrid fillers; (c) Thermal conductivities of (CNT+BN)@PVDF composites molded at varied compression temperature, the insets exhibited the morphologies of hybrid filler network[18]

    TC—Thermal conductivity

    图  4  (a) 热塑性聚氨酯(TPU)/聚多巴胺(PDA)/Ag复合材料制备示意图;(b) TPU/PDA/Ag纤维膜表面 SEM图像;(c) 热流沿面内方向的连续Ag粒子路径的传导示意图;(d) 不同Ag含量下TPU/PDA/Ag复合膜的导热系数[53]

    Figure  4.  (a) Schematic illustration of the preparation process of thermoplastic polyurethane (TPU)/polydopamine (PDA)/Ag composites; (b) SEM image of the surface of TPU/PDA/Ag fiber membrane; (c) Schematic illustration of heat flow transfer along continuous silver particles pathways in-plane direction; (d) Thermal conductivities of TPU/PDA/Ag composite films versus mass fraction of Ag[53]

    TPU/PDA/Ag-x—Mass fraction (xwt%) of Ag loading in TPU/PDA/Ag (polyurethane/polydopamine/argentum) composite films

    图  5  (a) 通过胶乳共混-铸膜工艺制备具有连续网络的天然橡胶(NR)-羧基化多壁碳纳米管(MWCNTR)复合材料的制备示意图;(b) NR-MWCNTR复合材料的TEM图像[56]

    Figure  5.  (a) Schematic representation of the preparation of natural rubber (NR)-carboxylated multi-walled carbon nanotubes (MWCNTR) composites with interconnected network by latex blending-solution casting process; (b) TEM images of NR-MWCNTR composite film[56]

    MWCNT—Multi-walled carbon nanotube

    图  6  聚合物和导热填料(包括金属填料、碳基填料和陶瓷填料)的导热系数[10]

    Figure  6.  Thermal conductivity of common materials including polymers and fillers (Metals, ceramics and carbon materials)[10]

    BNNT—Boron nitride nanotube; h-BN—Hexagonal boron nitride; BAs—Cubic boron arsenide; AlN—Aluminum nitride; BNNS—Boron nitride nanosheet

    图  7  (a) Cu@TPU复合材料制备和Cu2+在TPU颗粒表面还原的示意图[71];(b) PVDF@PDA@Ag/低熔点合金(LMPA)、PVDF/LMPA和PVDF@PDA/LMPA复合材料制备示意图[74]

    Figure  7.  (a) Schematic illustration of preparation process of Cu@TPU composites and Cu2+ reduction process on TPU granules[71]; (b) Schematic diagram of fabrication process of PVDF@PDA@Ag/low melting point alloy (LMPA), PVDF/LMPA and PVDF@PDA/LMPA composites[74]

    图  8  (a) BN@聚苯硫醚(PPS)和BN/PPS复合材料的制备示意图;(b) 30vol%BN含量下BN@PPS颗粒的OM图像;(c) 具有连续网络结构的BN/PPS复合材料和PPS/BN共混复合材料的导热系数[85]

    Figure  8.  (a) Schematic illustrating the synthesis process of BN@polyphenylene sulfide (PPS) and BN/PPS composite; (b) OM image of BN@PPS particles with 30vol%BN loading; (c) Thermal conductivity of the interconnected architecture BN/PPS composites and PPS/BN blend composites[85]

    APTES—3-aminopropyltriethoxysilane; S-PPS—Segregated polyphenylene sulfide; A-BN—APTES functionalized BN; PEI—Polyethylenimine

    图  9  (a) 具有连续网络结构的还原氧化石墨烯(RGO)/TPU复合材料的制备过程示意图;(b) RGO/TPU复合材料切片的OM图像;(c) 连续网络结构RGO/TPU的导热系数[20]

    Figure  9.  (a) Schematic illustration of fabrication process of reduced graphene oxide (RGO)/TPU composite with interconnected structure; (b) Optical microscope images of RGO/TPU composite sections; (c) Thermal conductivities of RGO/TPU with interconnected structure[20]

    GO—Graphene oxide

    图  10  (a) 具有三维连续网络结构的聚苯乙烯(PS)/氧化石墨烯(GO)-PDA复合材料制备示意图,插图为PS/GO-PDA薄膜照片;((b), (b’)) PS/GO-PDA微球的SEM图像;(c) 不同填料含量下PS/GO-PDA复合材料的面内和面外导热系数;(d) 不同填料含量下PS/GO和PS/GO-PDA体积电阻率[103]

    Figure  10.  (a) Schematic illustration of preparation of the polystyrene (PS)/graphene oxide (GO)-PDA composites with a continuous three-dimensional network. Inset: photograph of the PS/GO-PDA thin film; ((b), (b’)) SEM images of the PS/GO-PDA microspheres; (c) In-plane and through-plane thermal conductivities of the PS/GO-PDA composites with different filler loadings; (d) Volume electrical resistivity of the PS/GO and PS/GO-PDA with different filler loadings[103]

  • [1] DOAN V C, VU M C, THIEU N A T, et al. Copper flake-coated cellulose scaffold to construct segregated network for enhancing thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2019,165:772-778. doi: 10.1016/j.compositesb.2019.02.015
    [2] GUO Y Q, YANG X T, RUAN K P, et al. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11(28):25465-25473.
    [3] AL-AHMED A, MAZUMDER M A J, SALHI B, et al. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A Review[J]. Journal of Energy Storage,2021,35:102329. doi: 10.1016/j.est.2021.102329
    [4] ARBOLEDA-CLEMENTE L, GARCÍA-FONTE X, ABAD M J, et al. Role of rheology in tunning thermal conductivity of polyamide 12/polyamide 6 composites with a segregated multiwalled carbon nanotube network[J]. Journal of Composite Materials,2018,52(18):2549-2557. doi: 10.1177/0021998317749715
    [5] 石嵩, 张传琪, 张达, 等. 碳纳米管填充聚合物基导热复合材料的研究进展[J]. 科学通报, 2022, 67(30):3531-3545. doi: 10.1360/TB-2022-0318

    SHI Song, ZHANG Chuanqi, ZHANG Da, et al. Progress on carbon nanotube filled polymer-based thermal conductive composites[J]. Chinese Science Bulletin,2022,67(30):3531-3545(in Chinese). doi: 10.1360/TB-2022-0318
    [6] MENG X G, YU H J, WANG L, et al. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity[J]. Macromolecular Materials and Engineering,2021,306(11):2100434. doi: 10.1002/mame.202100434
    [7] 王世民, 温变英. 模压氮化硼/聚对苯二甲酸乙二醇酯复合材料的导热机制与散热效果[J]. 复合材料学报, 2023, 40(1):160-170. doi: 10.13801/j.cnki.fhclxb.20211215.002

    WANG Shimin, WEN Bianying. Thermal conduction mechanism and heat dissipation effect of compression molded boron nitride/polyethylene terephthalate composites[J]. Acta Materiae Compositae Sinica,2023,40(1):160-170(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211215.002
    [8] WU W T, ZHENG M S, LU K J, et al. Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications[J]. Composites Part A: Applied Science and Manufacturing,2023,169:107533. doi: 10.1016/j.compositesa.2023.107533
    [9] LI J P, CHENG R, CHENG Z, et al. Silver-nanoparticle-embedded hybrid nanopaper with significant thermal conductivity enhancement[J]. ACS Applied Materials & Interfaces,2021,13(30):36171-36181.
    [10] HE X H, WANG Y C. Recent advances in the rational design of thermal conductive polymer composites[J]. Industrial & Engineering Chemistry Research,2021,60(3):1137-1154.
    [11] WANG Y, WU W, DRUMMER D, et al. Improvement of thermal conductivity and mechanical properties for polybenzoxazine composites via incorporation of epoxy resin and segregated structure[J]. Materials Research Express,2020,7(9):095301. doi: 10.1088/2053-1591/abb263
    [12] LIU R P, HAN H, WU X T, et al. Construction of “core-shell” structure for improved thermal conductivity and mechanical properties of polyamide 6 composites[J]. Polymer Bulletin,2021,78(5):2791-2803. doi: 10.1007/s00289-020-03242-z
    [13] LI Z L, KONG J J, JU D D, et al. Thermal conductivity enhancement of poly(3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly(ethylene oxide)[J]. Composites Science and Technology,2017,149:185-191. doi: 10.1016/j.compscitech.2017.06.028
    [14] 林夏泽, 温变英. 界面效应对功能复合材料热传导行为的影响[J]. 复合材料学报, 2022, 39(4):1498-1510. doi: 10.13801/j.cnki.fhclxb.20211009.002

    LIN Xiaze, WEN Bianying. Influence of interfacial effect on heat conduction behavior of functional composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1498-1510(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211009.002
    [15] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1-28. doi: 10.1016/j.progpolymsci.2016.05.001
    [16] LIU B C, LI Y B, FEI T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method[J]. Chemical Engineering Journal,2020,385:123829. doi: 10.1016/j.cej.2019.123829
    [17] ZHAO F W, ZHANG G F, ZHAO S, et al. Fabrication of pristine graphene-based conductive polystyrene compo-sites towards high performance and light-weight[J]. Composites Science and Technology,2018,159:232-239. doi: 10.1016/j.compscitech.2018.02.013
    [18] WANG Z G, HUANG Y F, ZHANG G Q, et al. Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research,2018,57(31):10391-10397.
    [19] HU S F, XU B F, ZHAO Y, et al. Preparation of CNTs/PP@Gr composites with a segregated structure and enhanced electrical and thermal conductive properties by the Pickering emulsion method[J]. Composites Science and Technology,2022,222:109374.
    [20] LI A, ZHANG C, ZHANG Y F. RGO/TPU composite with a segregated structure as thermal interface material[J]. Composites Part A: Applied Science and Manufacturing,2017,101:108-114. doi: 10.1016/j.compositesa.2017.06.009
    [21] HAN Z D, FINA A. Thermal conductivity of carbon nano-tubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [22] CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [23] HUANG Y, ELLINGFORD C, BOWEN C, et al. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites[J]. International Materials Reviews,2020,65(3):129-163. doi: 10.1080/09506608.2019.1582180
    [24] PIETRAK K, WIŚNIEWSKI T S. A review of models for effective thermal conductivity of composite materials[J]. Journal of Power Technologies,2014,95(1):14-24.
    [25] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Physical Review,1959,113(4):1046-1051. doi: 10.1103/PhysRev.113.1046
    [26] ZHOU W X, CHENG Y A, CHEN K Q, et al. Thermal conductivity of amorphous materials[J]. Advanced Functional Materials,2020,30(8):1903829. doi: 10.1002/adfm.201903829
    [27] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [28] YANG X T, LIANG C B, MA T B, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1(2):207-230. doi: 10.1007/s42114-018-0031-8
    [29] OLUWALOWO A, NGUYEN N, ZHANG S L, et al. Electrical and thermal conductivity improvement of carbon nano-tube and silver composites[J]. Carbon,2019,146:224-231. doi: 10.1016/j.carbon.2019.01.073
    [30] KARGAR F, BARANI Z, SALGADO R, et al. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers[J]. ACS Applied Materials & Interfaces,2018,10(43):37555-37565.
    [31] WU Z H, XU C A, MA C Q, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials,2019,31(19):1900199. doi: 10.1002/adma.201900199
    [32] RYU S H, CHO H B, KWON Y T, et al. Quasi-isotropic thermal conduction in percolation networks: Using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites[J]. ACS Applied Polymer Materials,2020,3(3):1293-1305.
    [33] YANG J, SHEN X, YANG W, et al. Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications[J]. Progress in Materials Science,2023,133:101054.
    [34] HAN L Y, LI K Z, FU Y Q, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocompo-sites with remarkable thermal management performance[J]. Composites Science and Technology,2022,222:109407. doi: 10.1016/j.compscitech.2022.109407
    [35] TAN X, YUAN Q L, QIU M T, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review[J]. Journal of Materials Science & Technology,2022,117:238-250.
    [36] ANAND S, VU M C, MANI D, et al. Dual 3D networks of graphene derivatives based polydimethylsiloxane composites for electrical insulating electronic packaging materials with outstanding electromagnetic interference shielding and thermal dissipation performances[J]. Chemical Engineering Journal, 2023, 462: 142017.
    [37] BA K X, ZHANG M Y, WANG X D, et al. Porous graphene composites fabricated by template method used for electromagnetic shielding and thermal conduction[J]. Diamond and Related Materials,2023,131:109585. doi: 10.1016/j.diamond.2022.109585
    [38] YE L J, CHEN C M, BIAN Y X, et al. Segregated structures induced linear mechanoelectrical responses to low strains for elastomer/CNTs composites[J]. Composites Science and Technology,2022,230:109752. doi: 10.1016/j.compscitech.2022.109752
    [39] YANG W, WANG Y F, LI Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation[J]. Composites Part B: Engineering,2021,224:109168. doi: 10.1016/j.compositesb.2021.109168
    [40] KIM J, HAN N M, KIM J, et al. Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel[J]. ACS Applied Materials & Interfaces,2018,10(43):37507-37516.
    [41] BUSTILLOS J, ZHANG C, BOESL B, et al. Three-dimensional graphene foam-polymer composite with superior deicing efficiency and strength[J]. ACS Applied Materials & Interfaces,2018,10(5):5022-5029.
    [42] LI X H, LIU P F, LI X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon,2018,140:624-633. doi: 10.1016/j.carbon.2018.09.016
    [43] LEE W, HONG J, SONG J, et al. Fabrication of high-performance thermally conductive phase change material composites with porous ceramic filler network for efficient thermal management[J]. Composites Science and Technology,2023,240:110092. doi: 10.1016/j.compscitech.2023.110092
    [44] HU H L, ZHANG G, XIAO L G, et al. Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure[J]. Carbon,2012,50(12):4596-4599. doi: 10.1016/j.carbon.2012.05.045
    [45] DU J H, ZHAO L, ZENG Y, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene compo-sites with a segregated network structure[J]. Carbon,2011,49(4):1094-1100. doi: 10.1016/j.carbon.2010.11.013
    [46] LI M K, GAO C X, HU H L, et al. Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure[J]. Carbon,2013,65:371-373. doi: 10.1016/j.carbon.2013.08.016
    [47] GAO C, ZHANG S M, WANG F, et al. Conductive compo-sites with segregated structure and ultralow percolation threshold via flocculation-assembled PVDF/graphene core-shell particles[J]. Materials Letters,2015,158:428-431. doi: 10.1016/j.matlet.2015.06.011
    [48] WANG L, WANG H, LI B, et al. Highly electrically conductive polymer composite with a novel fiber-based segregated structure[J]. Journal of Materials Science,2020,55(25):11727-11738. doi: 10.1007/s10853-020-04797-y
    [49] XU M K, LIU J, ZHANG H B, et al. Electrically conductive Ti3C2Tx MXene/polypropylene nanocomposites with an ultralow percolation threshold for efficient electromagnetic interference shielding[J]. Industrial & Engi-neering Chemistry Research,2021,60(11):4342-4350.
    [50] CHANG C G, YANG J C, ZHANG G, et al. Fabrication of segregated poly(arylene sulfide sulfone)/graphene nanoplate composites reinforced by polymer fibers for electromagnetic interference shielding[J]. Nano Materials Science,2022,4(3):285-293. doi: 10.1016/j.nanoms.2021.11.001
    [51] ZHAO G J, CAO X Y, ZHANG Q, et al. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes[J]. Materials Today Physics,2021,21:100483. doi: 10.1016/j.mtphys.2021.100483
    [52] LI X, LI C H, ZHANG X M, et al. Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber[J]. Chemical Engineering Journal,2020,390:124563. doi: 10.1016/j.cej.2020.124563
    [53] YANG G, WANG M J, DONG J W, et al. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency[J]. Composites Part B: Engi-neering,2022,246:110253. doi: 10.1016/j.compositesb.2022.110253
    [54] WANG L Y, ZHANG J T, SUN Y Y, et al. Green preparation and enhanced gas barrier property of rubber nanocomposite film based on graphene oxide-induced chemical crosslinking[J]. Polymer,2021,225:123756. doi: 10.1016/j.polymer.2021.123756
    [55] ZHAN Y H, MENG Y Y, LI Y C. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network[J]. Materials Letters,2017,192:115-118. doi: 10.1016/j.matlet.2016.12.045
    [56] GEORGE N, CHANDRA J, MATHIAZHAGAN A, et al. High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes[J]. Composites Science and Technology,2015,116:33-40. doi: 10.1016/j.compscitech.2015.05.008
    [57] ZHU Y, WEI L Y, FU X, et al. Super strong and tough elastomers enabled by sacrificial segregated network[J]. Chinese Journal of Polymer Science,2021,39(3):377-386. doi: 10.1007/s10118-020-2484-9
    [58] QIN H M, DENG C R, LU S J, et al. Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites[J]. Polymer Composites,2020,41(4):1299-1309. doi: 10.1002/pc.25455
    [59] LI Y J, HE Q, ZHANG H, et al. Functionalised graphene oxide-bromobutyl rubber composites with segregated structure for enhanced gas barrier properties[J]. Plastics, Rubber and Composites,2022,51(7):363-371. doi: 10.1080/14658011.2021.2008702
    [60] BOURGEAT-LAMI E, FAUCHEU J, NOËL A. Latex routes to graphene-based nanocomposites[J]. Polymer Che-mistry,2015,6(30):5323-5357. doi: 10.1039/C5PY00490J
    [61] SCHERILLO G, LAVORGNA M, BUONOCORE G G, et al. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites[J]. ACS Applied Materials & Interfaces,2014,6(4):2230-2234.
    [62] HAN L J, WANG H R, TANG Q, et al. Preparation of graphene/polypropylene composites with high dielectric constant and low dielectric loss via constructing a segregated graphene network[J]. RSC Advances,2021,11(60):38264-38272. doi: 10.1039/D1RA06138K
    [63] GEORGE N, VARGHESE G A, JOSEPH R. Improved mechanical and barrier properties of Natural rubber-Multiwalled carbon nanotube composites with segregated network structure[J]. Materials Today: Proceedings,2019,9:13-20. doi: 10.1016/j.matpr.2019.02.030
    [64] CUI J S, ZHOU S X. Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy[J]. Journal of Materials Chemistry C,2018,6(3):550-557. doi: 10.1039/C7TC04752E
    [65] XU C H, WU W C, ZHENG Z J, et al. Strengthened, conductivity-tunable, and low solvent-sensitive flexible conductive rubber films with a Zn2+-crosslinked one-body segregated network[J]. Composites Science and Technology,2021,203:108606. doi: 10.1016/j.compscitech.2020.108606
    [66] SONG Q C, CHEN B X, ZHOU Z H, et al. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance[J]. Science China Materials,2021,64(6):1437-1448. doi: 10.1007/s40843-020-1539-2
    [67] WU S L, SHI T J, ZHANG L Y. Latex co-coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property[J]. Journal of Applied Polymer Science,2016,133(11):43117.
    [68] LI M N, TANG C, ZHANG L, et al. A thermally conductive epoxy polymer composites with hybrid fillers of copper nanowires and reduced graphene oxide[J]. Journal of Materials Science: Materials in Electronics,2017,28(20):15694-15700. doi: 10.1007/s10854-017-7459-4
    [69] FENG Y Z, LI X W, ZHAO X Y, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “branch-like” flame-retardant functionalized graphene[J]. ACS Applied Materials & Interfaces,2018,10(25):21628-21641.
    [70] LIU F, XIE Z X, CAI Y F, et al. Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity[J]. Journal of Materials Science: Materials in Electronics,2021,32:28394-28405. doi: 10.1007/s10854-021-07219-0
    [71] WANG Y, CHEN Q M, LIU C, et al. Highly enhanced thermal conductivity of TPU composites with segregated network constructed by the in-situ reduction of copper[J]. Journal of Alloys and Compounds,2023,941:168801. doi: 10.1016/j.jallcom.2023.168801
    [72] ZHANG L, LI Z F, LIU G T, et al. Enhancement of the electrical and thermal conductivity of epoxy-based compo-site films through the construction of the multi-scale conductive bridge structure[J]. Composites Science and Technology,2023,239:110074. doi: 10.1016/j.compscitech.2023.110074
    [73] ZHAN Y H, LAVORGNA M, BUONOCORE G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry,2012,22(21):10464-10468. doi: 10.1039/c2jm31293j
    [74] ZHANG P, ZHANG X, DING X, et al. Improving thermal conductivity of polyvinylidene fluoride/low-melting-point alloy with segregated structure induced by incorporation of silver interface layer[J]. Journal of Polymer Research,2022,29(9):390. doi: 10.1007/s10965-022-03242-9
    [75] BHUTTA M S, TANG X B, AKRAM S, et al. Development of novel hybrid 2D-3D graphene oxide diamond micro composite polyimide films to ameliorate electrical & thermal conduction[J]. Journal of Industrial and Engineering Chemistry,2022,114:108-114. doi: 10.1016/j.jiec.2022.06.036
    [76] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10):4531-4539. doi: 10.13801/j.cnki.fhclxb.20211028.007

    SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica,2022,39(10):4531-4539(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211028.007
    [77] LEE W, KIM J. Improved thermal conductivity of poly (dimethylsiloxane) composites filled with well-aligned hybrid filler network of boron nitride and graphene oxide[J]. Polymer Testing,2021,104:107402. doi: 10.1016/j.polymertesting.2021.107402
    [78] YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids,2022,576:121272.
    [79] HU M C, FENG J Y, NG K M. Thermally conductive PP/AlN composites with a 3D segregated structure[J]. Composites Science and Technology,2015,110:26-34. doi: 10.1016/j.compscitech.2015.01.019
    [80] ZHANG X, XIA X C, YOU H, et al. Design of continuous segregated polypropylene/Al2O3 nanocomposites and impact of controlled Al2O3 distribution on thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105825. doi: 10.1016/j.compositesa.2020.105825
    [81] LI B, LI R L, XIE Y X. Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite[J]. Journal of Materials Science,2017,52(5):2524-2533. doi: 10.1007/s10853-016-0546-8
    [82] WANG X, LU H, FENG C, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics, Rubber and Composites,2020,49(5):196-203. doi: 10.1080/14658011.2020.1726143
    [83] DING J W, ZHENG R B, ZHANG Y J, et al. The high thermal conductive and flexible boron nitride/silicone rubber composites with segregated structure[J]. Materials Research Express,2021,8(3):035306. doi: 10.1088/2053-1591/abed6b
    [84] GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
    [85] JIANG Y, LIU Y J, MIN P, et al. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities[J]. Composites Science and Technology,2017,144:63-69. doi: 10.1016/j.compscitech.2017.03.023
    [86] LIU C, WU W, DRUMMER D, et al. Significantly enhanced thermal conductivity of polymer composites via establishing double-percolated expanded graphite/multi-layer graphene hybrid filler network[J]. European Polymer Journal,2021,160:110768. doi: 10.1016/j.eurpolymj.2021.110768
    [87] SUDHINDRA S, KARGAR F, BALANDIN A A. Noncured graphene thermal interface materials for high-power electronics: Minimizing the thermal contact resistance[J]. Nanomaterials,2021,11(7):1699. doi: 10.3390/nano11071699
    [88] LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers: Review of the state of the art and outlook for future applications[J]. Nanotechnology,2021,32(14):142003. doi: 10.1088/1361-6528/abc0c6
    [89] GAO C W, FENG C P, LU H, et al. Thermally conductive general-purpose polystyrene (GPPS)/graphite composite with a segregated structure: Effect of size of resin and graphite flakes[J]. Polymer-Plastics Technology and Engineering,2018,57(13):1277-1287. doi: 10.1080/03602559.2017.1381242
    [90] LEI Y Z, BAI Y, SHI Y, et al. Composite nanoarchitectonics of poly (vinylidene fluoride)/graphene for thermal and electrical conductivity enhancement via constructing segregated network structure[J]. Journal of Polymer Research,2022,29(5):213. doi: 10.1007/s10965-022-03052-z
    [91] SONG N, CAO D L, LUO X, et al. Highly thermally conductive polypropylene/graphene composites for thermal management[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105912. doi: 10.1016/j.compositesa.2020.105912
    [92] YU J, CHOI H K, KIM H S, et al. Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nano-tube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect[J]. Composites Part A: Applied Science and Manufacturing,2016,88:79-85. doi: 10.1016/j.compositesa.2016.05.022
    [93] WANG Z G, GONG F, YU W C, et al. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites[J]. Composites Science and Technology,2018,162:7-13. doi: 10.1016/j.compscitech.2018.03.016
    [94] CHEN R, HE Q X, LI X, et al. Significant enhancement of thermal conductivity in segregated (GnPs&MWCNTs)@polybenzoxazine/(polyether ether ketone)-based composites with excellent electromagnetic shielding[J]. Chemical Engineering Journal,2022,431:134049. doi: 10.1016/j.cej.2021.134049
    [95] ZHANG P, DING X, WANG Y Y, et al. Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,117:56-64. doi: 10.1016/j.compositesa.2018.11.007
    [96] HAO M Y, QIAN X, ZHANG Y G, et al. Thermal conductivity enhancement of carbon fiber/epoxy composites via constructing three-dimensionally aligned hybrid thermal conductive structures on fiber surfaces[J]. Composites Science and Technology,2023,231:109800. doi: 10.1016/j.compscitech.2022.109800
    [97] WU W F, REN T L, LIU X Q, et al. Creating thermal conductive pathways in polymer matrix by directional assembly of synergistic fillers assisted by electric fields[J]. Composites Communications,2022,35:101309. doi: 10.1016/j.coco.2022.101309
    [98] ZHANG H, ZHANG X W, LI D T, et al. Thermal conductivity enhancement via conductive network conversion from “sand-like” to “stone-like” in the polydimethylsiloxane composites[J]. Composites Communications,2020,22:100509. doi: 10.1016/j.coco.2020.100509
    [99] 田恐虎, 吴阳, 盛绍顶, 等. 聚合物基绝缘导热复合材料中碳系填料的研究进展[J]. 复合材料学报, 2021, 38(4):1054-1065. doi: 10.13801/j.cnki.fhclxb.20201224.001

    TIAN Konghu, WU Yang, SHENG Shaoding, et al. Research progress of carbon-based fillers in polymer matrix insulating and thermally conductive composites[J]. Acta Materiae Compositae Sinica,2021,38(4):1054-1065(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201224.001
    [100] LI M N, TANG C, ZHANG L, et al. A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide[J]. Journal of Materials Science: Materials in Electronics,2018,29(6):4948-4954.
    [101] AN D, LI Z W, CHEN H F, et al. Modulation of covalent bonded boron nitride/graphene and three-dimensional networks to achieve highly thermal conductivity for polymer-based thermal interfacial materials[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106890. doi: 10.1016/j.compositesa.2022.106890
    [102] ZHANG X, WU K, LIU Y H, et al. Preparation of highly thermally conductive but electrically insulating compo-sites by constructing a segregated double network in polymer composites[J]. Composites Science and Technology,2019,175:135-142. doi: 10.1016/j.compscitech.2019.03.017
    [103] YUAN H, WANG Y, LI T, et al. Fabrication of thermally conductive and electrically insulating polymer compo-sites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. doi: 10.1039/C9NR02491C
    [104] FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage[J]. Composites Science and Technology,2018,167:456-462. doi: 10.1016/j.compscitech.2018.08.039
  • 加载中
图(10)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  426
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-05-17
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回