留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性

张建伟 李想 韩智光 边汉亮

张建伟, 李想, 韩智光, 等. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性[J]. 复合材料学报, 2024, 41(1): 350-361. doi: 10.13801/j.cnki.fhclxb.20230529.003
引用本文: 张建伟, 李想, 韩智光, 等. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性[J]. 复合材料学报, 2024, 41(1): 350-361. doi: 10.13801/j.cnki.fhclxb.20230529.003
ZHANG Jianwei, LI Xiang, HAN Zhiguang, et al. Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 350-361. doi: 10.13801/j.cnki.fhclxb.20230529.003
Citation: ZHANG Jianwei, LI Xiang, HAN Zhiguang, et al. Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 350-361. doi: 10.13801/j.cnki.fhclxb.20230529.003

废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性

doi: 10.13801/j.cnki.fhclxb.20230529.003
基金项目: 国家自然科学基金项目(42177454);河南省自然科学基金(232300420073);河南省研究生教育改革与质量提升工程项目(YJS2021JD13)
详细信息
    通讯作者:

    张建伟,博士,教授,硕士生导师,研究方向为环境岩土工程 E-mail:zjw101_0@163.com

  • 中图分类号: TU443;TB332

Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement

Funds: National Natural Science Foundation of China (42177454); Natural Science Foundation of Henan (232300420073); Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2021JD13)
  • 摘要: 为进一步提升酶诱导碳酸盐沉淀(EICP)固化砂土的抗剪强度特性,改善固化砂土的脆性破坏特征,向未固化砂土中添加废弃的一次性口罩进行改良。基于三轴压缩试验等,研究不同口罩纤维掺量对EICP固化砂土抗剪强度的影响,并分析改变EICP滴注轮次和砂土初始相对密实度后,改良砂土的抗剪强度特性和口罩加筋效益的变化情况。结果表明:口罩最优掺量为0.2%,不同围压下可以使改良砂土的峰值偏应力提高59.9%~34%,黏聚力提高188%,内摩擦角提高14.5%,且能有效减少峰后强度损失,改善固化砂土的脆性破坏特征;增加滴注轮次和相对密实度可以提高峰值偏应力、黏聚力和内摩擦角,但口罩的加筋效果略微减弱;碳酸钙生成率随滴注轮次增加而增大,随相对密实度增加而减小,加筋可以提高碳酸钙生成率。

     

  • 图  1  试验流程图

    Figure  1.  Test flow chart

    图  2  不同口罩纤维掺量的酶诱导碳酸盐沉淀技术(EICP)固化砂土在不同围压下的应力-应变曲线

    Figure  2.  Stress-strain curves of EICP solidified sand with different mask fiber content under different confining pressures

    图  3  EICP固化砂土的初始弹性模量Ei与口罩纤维掺量、围压的关系

    Figure  3.  Initial elastic modulus Ei of EICP solidified sand affected by mask fiber content and confining pressure

    图  4  不同口罩纤维掺量下EICP固化砂土的峰值偏应力和残余偏应力

    Figure  4.  Peak deviator stress and residual deviator stress of EICP solidified sand varying with mask fiber contents

    图  5  加筋前后EICP固化砂土的SEM微观图像

    Figure  5.  SEM microscopic images of EICP solidified sand before and after reinforcement

    图  6  不同口罩纤维掺量下EICP固化砂土的强度损失率

    Figure  6.  Strength loss rate of EICP solidified sand varying with mask fiber contents

    图  7  EICP固化砂土的黏聚力和内摩擦角随口罩纤维掺量变化曲线

    Figure  7.  Variation of cohesion and angle of internal friction of EICP solidified sand with mask fiber contents

    图  8  不同滴注轮次(l)的EICP固化砂土在围压300 kPa时的应力-应变曲线

    Figure  8.  Stress-strain curves of EICP solidified sand affected by different reinforcement times (l) under confining pressure of 300 kPa

    图  9  不同滴注轮次下EICP固化砂土的初始弹性模量

    Figure  9.  Initial elastic modulus of EICP solidified sand affected by different reinforcement times

    图  10  滴注次数对EICP固化砂土的碳酸钙生成率的影响

    Figure  10.  Effect of reinforcement times on calcium carbonate formation rate of EICP solidified sand

    T—Top part; M—Middle part; B—Bottom part

    图  11  不同滴注轮次下EICP固化砂土的峰值偏应力和残余偏应力

    Figure  11.  Peak deviator stress and residual deviator stress of EICP solidified sand varying with reinforcement times

    图  12  不同滴注轮次下EICP固化砂土的强度损失率

    Figure  12.  Strength loss rate of EICP solidified sand varying with reinforcement times

    图  13  EICP固化砂土的黏聚力和内摩擦角随滴注轮次变化曲线

    Figure  13.  Variation of cohesion and angle of internal friction of EICP solidified sand with reinforcement times

    图  14  不同初始相对密实度的EICP固化砂土在围压300 kPa时的应力-应变曲线

    Figure  14.  Stress-strain curves of EICP solidified sand with different initial relative densities under confining pressure of 300 kPa

    图  15  不同初始相对密实度下EICP固化砂土的初始弹性模量

    Figure  15.  Initial elastic modulus of EICP solidified sand affected by different initial relative densities

    图  16  初始相对密实度对EICP固化砂土碳酸钙生成率的影响

    Figure  16.  Effect of initial relative density of EICP solidified sand on calcium carbonate formation rate

    图  17  不同初始相对密实度下EICP固化砂土的峰值偏应力和残余偏应力

    Figure  17.  Peak deviator stress and residual deviator stress of EICP solidified sand varying with initial relative densities

    图  18  不同初始相对密实度下EICP固化砂土的强度损失率

    Figure  18.  Strength loss rate of EICP solidified sand varying with initial relative densities

    图  19  EICP固化砂土的黏聚力和内摩擦角随初始相对密实度变化曲线

    Figure  19.  Variation of cohesion and angle of internal friction of EICP solidified sand with initial relative densities

    表  1  标准砂的物理力学性质

    Table  1.   Physical-mechanical properties of sand

    Effective particle size/mm Specific gravityCurvature coefficientNonuniformity coefficient
    D10D30D60
    0.130.30.66 2.651.055.07
    Note: Dn means the mass of particles smaller than this particle size accounts for n% of the total mass of soil particles.
    下载: 导出CSV

    表  2  口罩的物理力学性质

    Table  2.   Physical-mechanical properties of face masks

    Nonuniformity
    coefficient
    Melting point/
    Water absorption/
    %
    Tensile strength/
    MPa
    Elongation at break/
    %
    Tensile strength at break/
    MPa
    0.911609.54.25118.94.18
    下载: 导出CSV

    表  3  工况设置

    Table  3.   Working conditions setting

    TestMask fiber content/%Number of EICP drops/dropRelative density/%Confining pressure/kPa
    C10450100, 200
    300, 400
    C20.1450
    C30.15450
    C40.2450
    C50.25450
    C60.3450
    L10350
    L20550
    L30.2350
    L40.2550
    D10430
    D20480
    D30.2430
    D40.2480
    Note: EICP—Enzyme-induced carbonate precipitation.
    下载: 导出CSV
  • [1] SHU S, YAN B, MENG H, et al. Comparative study of EICP treatment methods on the mechanical properties of sandy soil[J]. Soils and Foundations,2022,62(6):101246. doi: 10.1016/j.sandf.2022.101246
    [2] 张建伟, 李贝贝, 边汉亮, 等. 钙源对酶诱导碳酸钙沉淀影响的试验研究[J]. 应用基础与工程科学学报, 2022, 30(5):1245-1255.

    ZHANG Jianwei, LI Beibei, BIAN Hanliang, et al. Influence and evaluation analysis of different fibers on the performance of recycled aggregate pervious concrete[J]. Journal of Basic Science and Engineering,2022,30(5):1245-1255(in Chinese).
    [3] LIU L, LIU H L, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal,2019,56(10):1502-1513. doi: 10.1139/cgj-2018-0007
    [4] 赵志峰, 邵光辉. 微生物诱导碳酸钙沉积加固海相粉土的试验研究[J]. 应用基础与工程科学学报, 2021, 29(1):231-238. doi: 10.16058/j.issn.1005-0930.2021.01.020

    ZHAO Zhifeng, SHAO Guanghui. Experimental study on marine silt reinforcement by microbial induced calcium precipitation[J]. Journal of Basic Science and Engineering,2021,29(1):231-238(in Chinese). doi: 10.16058/j.issn.1005-0930.2021.01.020
    [5] PHILLIPS A J, LAUCHNOR E, ELDRING J J, et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation[J]. Environmental Science & Technology,2013,47(1):142-149.
    [6] 许朝阳, 杨贺, 黄建璋, 等. 生物修复Cu2+、Pb2+污染土的稳定性[J]. 工业建筑, 2018, 48(7):33-37.

    XU Zhaoyang, YANG He, HUANG Jianzhang, et al. Stability of bioremediated soil contaminated by Cu2+ or Pb2+[J]. Industrial Construction,2018,48(7):33-37(in Chinese).
    [7] KHODADADI T H, KAVAZANJIAN E, VAN PAASSEN L, et al. Bio-grout materials: A review[C]//American Society of Civil Engineers (ASCE). Virginia: ASCE Publications, 2017: 1-12.
    [8] 董瑾, 刘效彬. 脲酶诱导碳酸钙沉淀技术改良传统三合土的性能[J]. 建筑材料学报, 2022, 25(8):853-859. doi: 10.3969/j.issn.1007-9629.2022.08.012

    DONG Jin, LIU Xiaobin. Performance of traditional tabia improved by enzyme induced calcite precipitation technology[J]. Journal of Building Materials,2022,25(8):853-859(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.08.012
    [9] YASUHARA H, NEUPANE D, HAYASHI K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation[J]. Soils and Foundations,2012,52(3):539-549. doi: 10.1016/j.sandf.2012.05.011
    [10] MIFTAH A, KHODADADI TIRKOLAEI H, BILSEL H, et al. Erodibility improvement and scour mitigation of beach sand by enzymatic induced carbonate precipitation[J]. Geomechanics for Energy and the Environment,2022,32:100354. doi: 10.1016/j.gete.2022.100354
    [11] HE J, YANG F, QI Y, et al. Improvement in silty sand with enzyme-induced carbonate precipitation: Laboratory model experiment[J]. Acta Geotechnica,2022,17(7):2895-2905. doi: 10.1007/s11440-021-01361-z
    [12] DAKHANE A, DAS S, HANSEN H, et al. Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: Quantification based on fracture response[J]. Journal of Materials in Civil Engineering,2018,30(4):4018035. doi: 10.1061/(ASCE)MT.1943-5533.0002218
    [13] 刘阳, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积技术的防风固沙试验研究[J]. 河南科学, 2019, 37(11):1784-1789. doi: 10.3969/j.issn.1004-3918.2019.11.012

    LIU Yang, GAO Yufeng, HE Jia, et al. Experimental study on the windbreak and sand fixation effect using soybean urease induced calcium carbonate precipitation[J]. Henan Science,2019,37(11):1784-1789(in Chinese). doi: 10.3969/j.issn.1004-3918.2019.11.012
    [14] 边汉亮, 张旭钢, 韩一, 等. 大豆脲酶对Zn2+污染土的修复试验研究[J]. 工业建筑, 2022, 52(11):67-70.

    BIAN Hanliang, ZHANG Xugang, HAN Yi, et al. Remediation tests of Zn2+ contaminated soil by soybean urease[J]. Industrial Construction,2022,52(11):67-70(in Chinese).
    [15] NOORZAD R, AMINI P F. Liquefaction resistance of babolsar sand reinforced with randomly distributed fibers under cyclic loading[J]. Soil Dynamics and Earthquake Engineering,2014,66:281-292. doi: 10.1016/j.soildyn.2014.07.011
    [16] 李丽华, 万畅, 刘永莉, 等. 玻璃纤维加筋砂土剪切强度特性研究[J]. 武汉大学学报(工学版), 2017, 50(1):102-106. doi: 10.14188/j.1671-8844.2017-01-015

    LI Lihua, WAN Chang, LIU Yongli, et al. Shear strength characteristics of glass fiber reinforced sandy soil[J]. Engineering Journal of Wuhan University,2017,50(1):102-106(in Chinese). doi: 10.14188/j.1671-8844.2017-01-015
    [17] 高磊, 胡国辉, 杨晨, 等. 玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(S1):231-237. doi: 10.11779/CJGE2016S1043

    GAO Lei, HU Guohui, YANG Chen, et al. Shear strength characteristics of basalt fiber-reinforced clay[J]. Chinese Journal of Geotechnical Engineering,2016,38(S1):231-237(in Chinese). doi: 10.11779/CJGE2016S1043
    [18] SHAO W, CETIN B, LI Y D, et al. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering,2014,32(4):901-910. doi: 10.1007/s10706-014-9766-3
    [19] 钟汉林, 刘春辉, 张俊, 等. 随机分布剑麻纤维对砂土力学特性的影响[J]. 烟台大学学报(自然科学与工程版), 2019, 32(4):391-396. doi: 10.13951/j.cnki.37-1213/n.2019.04.015

    ZHONG Hanlin, LIU Chunhui, ZHANG Jun, et al. Effect of randomly distributed sisal fibers on static mechanical properties of sand[J]. Journal of Yantai University (Natural Science and Engineering Edition),2019,32(4):391-396(in Chinese). doi: 10.13951/j.cnki.37-1213/n.2019.04.015
    [20] CHOI S G, WANG K J, CHU J. Properties of biocemented, fiber reinforced sand[J]. Construction and Buildinding Materials,2016,120:623-629. doi: 10.1016/j.conbuildmat.2016.05.124
    [21] LI M, LI L, OGBONNAYA U, et al. Influence of fiber addition on mechanical properties of MICP-treated sand[J]. Journal of Materials in Civil Engineering,2016,28(4):268. doi: 10.1061/(ASCE)MT.1943-5533.0001442
    [22] FANG X W, YANG Y, CHEN Z, et al. Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal,2020,37(6):582-594. doi: 10.1080/01490451.2020.1743392
    [23] SABERIAN M, LI J, KILMARTIN-LYNCH S, et al. Repurposing of COVID-19 single-use face masks for pavements base/subbase[J]. Science of the Total Environment,2021,769:145527. doi: 10.1016/j.scitotenv.2021.145527
    [24] 闭东民, 孔纲强, 陈庚, 等. 废弃口罩加筋固化土的强度特性与破坏模式[J]. 防灾减灾工程学报, 2022, 42(5):993-998, 1009.

    BI Dongmin, KONG Gangqiang, CHEN Geng, et al. Strength characteristics and failure mode of solidified soil reinforced by waste masks[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(5):993-998, 1009(in Chinese).
    [25] REHMAN Z U, KHALID U. Reuse of COVID-19 face mask for the amelioration of mechanical properties of fat clay: A novel solution to an emerging waste problem[J]. Science of the Total Environment,2021,794:148746. doi: 10.1016/j.scitotenv.2021.148746
    [26] AKBULUT S, ARASAN S, KALKAN E. Modification of clayey soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science,2007,38(1):23-32.
    [27] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
    [28] 陈翔. 钙质砂不固结不排水剪切特性研究[D]. 南宁: 广西大学, 2022.

    CHEN Xiang. Research on unconsolidated undrained shear characteristics of calcareous sand[D]. Nanning: Guangxi University, 2022(in Chinese).
    [29] 程富阳, 黄英, 周志伟, 等. 干湿循环下饱和红土不排水三轴试验研究[J]. 工程地质学报, 2017, 25(4):1017-1026. doi: 10.13544/j.cnki.jeg.2017.04.016

    CHENG Fuyang, HUANG Ying, ZHOU Zhiwei, et al. Undrained triaxial test of saturated laterite under drying-wetting cycle[J]. Journal of Engineering Geology,2017,25(4):1017-1026(in Chinese). doi: 10.13544/j.cnki.jeg.2017.04.016
    [30] 李驰, 刘世慧, 周团结, 等. 微生物矿化风沙土强度及孔隙特性的试验研究[J]. 力学与实践, 2017, 39(2):165-171, 184. doi: 10.6052/1000-0879-16-286

    LI Chi, LIU Shihui, ZHOU Tuanjie, et al. The strength and porosity properties of MICP-treated aeolian sandy soil[J]. Mechanics in Engineering,2017,39(2):165-171, 184(in Chinese). doi: 10.6052/1000-0879-16-286
    [31] 郑俊杰, 宋杨, 赖汉江, 等. 微生物固化纤维加筋砂土抗剪强度试验研究[J]. 土木与环境工程学报(中英文), 2019, 41(1):15-21.

    ZHENG Junjie, SONG Yang, LAI Hanjiang, et al. Experimental study on the shear behavior of fiber-reinforced bio-cemented sand[J]. Journal of Civil and Environmental Engineering,2019,41(1):15-21(in Chinese).
    [32] 徐日庆, 王兴陈, 朱剑锋, 等. 初始相对密实度对砂土强度特性影响的试验[J]. 江苏大学学报(自然科学版), 2012, 33(3):345-349.

    XU Riqing, WANG Xingchen, ZHU Jianfeng, et al. Experiment of initial relative density effects on sand strength[J]. Journal of Jiangsu University (Natural Science Edition),2012,33(3):345-349(in Chinese).
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  218
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-05-09
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回