留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SW220/430LV在不同温度下热-力压缩行为研究和表征建模

陈国涛 梅志远 夏奕

陈国涛, 梅志远, 夏奕. SW220/430LV在不同温度下热-力压缩行为研究和表征建模[J]. 复合材料学报, 2024, 41(1): 521-532. doi: 10.13801/j.cnki.fhclxb.20230526.001
引用本文: 陈国涛, 梅志远, 夏奕. SW220/430LV在不同温度下热-力压缩行为研究和表征建模[J]. 复合材料学报, 2024, 41(1): 521-532. doi: 10.13801/j.cnki.fhclxb.20230526.001
CHEN Guotao, MEI Zhiyuan, XIA Yi. Thermal-mechanical compression behavior and characterization modeling of SW220/430LV at different temperatures[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 521-532. doi: 10.13801/j.cnki.fhclxb.20230526.001
Citation: CHEN Guotao, MEI Zhiyuan, XIA Yi. Thermal-mechanical compression behavior and characterization modeling of SW220/430LV at different temperatures[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 521-532. doi: 10.13801/j.cnki.fhclxb.20230526.001

SW220/430LV在不同温度下热-力压缩行为研究和表征建模

doi: 10.13801/j.cnki.fhclxb.20230526.001
基金项目: 国家自然科学基金面上资助项目(51479205;51609252);海军工程大学舰船与海洋学院强基计划
详细信息
    通讯作者:

    梅志远,博士,教授,博士生导师,研究方向为舰船功能复合材料结构工程、舰船结构抗爆与防护工程 E-mail: zhiyuan_mei@163.com

  • 中图分类号: TB332

Thermal-mechanical compression behavior and characterization modeling of SW220/430LV at different temperatures

Funds: National Natural Science Foundation of China (51479205; 51609252); Strong Base Program, Naval University of Engineering, College of Naval and Ocean Engineering
  • 摘要: 对S2/430LV进行热-力联合作用下压缩性能试验研究,重点揭示S2/430LV在20~180℃压缩损伤失效机制及强度/模量随温度变化规律;提出一种基于Ha-Springer模型的分段曲线拟合方法,并对强度/模量随温度变化规律进行预报。研究表明:在热-力联合作用下,压缩强度和模量随着温度升高而降低,但模量保留率高于强度;随着温度增加,试样最终失效模式发生改变,在100℃之前,试样呈整体剪切失效模式,纤维束发生扭结,并伴随纤维断裂和损伤路径出现断口;但在100℃以后,最终失效模式表现为树脂基体剪切损伤,而纤维织物形态基本不变;强度和模量随温度变化规律呈“S”形趋势,其中强度-温度曲线在20~80℃为凸曲线,80~180℃则为凹曲线;模量-温度曲线在20~100℃为凸曲线,100~180℃为凹曲线;提出了一种基于Ha-Springer模型的分段曲线拟合方法,并利用Origin软件对强度/模量随温度变化规律进行预报,预报结果与试验结果高度吻合,且吻合程度优于Mahieux模型。

     

  • 图  1  S2/430LV试样尺寸及状态

    Figure  1.  Sample geometry and status of S2/430LV

    图  2  S2/430LV试样与夹具安装及加载状态

    Figure  2.  Specimen and fixture installation and loading status of S2/430LV

    图  3  试样、温度参照样件及热源相对位置关系

    Figure  3.  Sample, temperature reference sample and relative position of heat source

    图  4  S2/430LV试样在100℃整体损伤形貌

    Figure  4.  Overall damage morphology of S2/430LV at 100℃

    图  5  S2/430LV试样在不同温度下沿厚度方向损伤形貌

    Figure  5.  Specimen damage morphology along thickness direction at different temperatures of S2/430LV

    图  6  S2/430LV压缩强度随温度变化规律

    Figure  6.  Variation of compressive strength with temperature of S2/430LV

    图  7  S2/430LV压缩模量随温度变化规律

    Figure  7.  Variation of compressive modulus with temperature of S2/430LV

    图  8  S2/430LV压缩强度和模量保留率随温度变化对比

    Figure  8.  Comparison of tensile strength and modulus with temperature of S2/430LV

    图  9  S2/430LV应力-位移曲线

    Figure  9.  Stress-displacement curves of S2/430LV

    图  10  Ha-Springer强度拟合结果与试验结果对比

    Figure  10.  Comparison between Ha-Springer strength fitting results and experimental results

    aP0(T0); bT0; cTE; dk; R2—Correlation coefficient

    图  11  Ha-Springer强度完整拟合结果与试验结果对比

    Figure  11.  Fitting results of Ha-Springer compared with experimental results

    图  12  Ha-Springer模量拟合结果与试验结果对比

    Figure  12.  Comparison of Ha-Springer modulus fitting results and experimental results

    图  13  Ha-Springer模量完整拟合结果与试验结果对比

    Figure  13.  Complete fitting results of Ha-Springer modulus compared with the experimental results

    图  14  Mahieux模型拟合结果与试验结果对比

    Figure  14.  Fitting results of Mahieux compared with experimental results

    a'Pg; b'Pr; c'm; d'Td; e'n

    图  15  Mahieux和Ha-Springer拟合结果对比分析

    Figure  15.  Comparative analysis of Mahieux and Ha-Springer fitting results

    表  1  S2/430LV压缩强度汇总

    Table  1.   Comprehensive strength summary of S2/430LV

    Temperature/℃T-1/MPaT-2/MPaT-3/MPaT-4/MPaT-5/MPaAverage/MPaDispersion factor/%Retention rate/%
    20288.60265.20292.30282.90284.50282.703.70100.00
    40256.09285.74266.41253.20256.09263.515.0993.21
    60227.94223.95208.88217.99215.40218.833.3977.41
    80134.07126.91133.63137.98135.42133.603.0747.26
    10057.0549.1052.4259.5664.9256.6110.8920.02
    12023.0022.4322.9623.3722.0822.772.248.05
    15017.0216.2816.1514.2814.1415.578.285.51
    18013.6212.7014.5813.1311.7813.166.404.66
    Note: T-1-T-5 represent specimen numbers.
    下载: 导出CSV

    表  2  S2/430LV压缩模量汇总

    Table  2.   Comprehensive modulus summary of S2/430LV

    Temperature T/℃T-1/GPaT-2/GPaT-3/GPaT-4/GPaT-5/GPaAverage
    /GPa
    Dispersion
    factor/%
    Retention
    rate/%
    Strain range
    2021.2420.6921.4621.8922.0421.462.51100.0010−3-4×10−3
    4020.6120.7421.6821.4420.8621.072.2298.1510−3-4×10−3
    6020.2419.3619.6721.7520.4120.294.5494.5110−3-4×10−3
    8014.9116.0215.1715.7815.4415.462.9072.0510−3-4×10−3
    10012.2213.8511.2512.4512.3612.437.4857.8910−3-3×10−3
    1206.866.056.826.156.536.485.7330.2010−3-2×10−3
    1504.325.234.233.984.124.3811.2920.393×10−2-8×10−2
    1803.562.893.443.303.363.317.6815.423×10−2-8×10−2
    下载: 导出CSV

    表  3  Ha-Springer模型强度预报参数

    Table  3.   Ha-Springer model strength prediction parameters

    ClassificationT0/℃P0(T0)/MPaTE/℃k
    Convex curve20282.70800.2
    Concave curve80133.602505
    Notes: On the convex curve segment, T0 is the room temperature, TE is the highest temperature; In the concave curve range, T0 is the lowest temperature within the temperature range, TE is the temperature at which the mechanical properties of the material decay to zero; P0(T0) represents the mechanical properties of the material at T0; k is the temperature coefficient.
    下载: 导出CSV

    表  4  Ha-Springer模型模量预报参数

    Table  4.   Ha-Springer model modulus prediction parameters

    ClassificationT0/℃P0(T0)/MPaTE/℃k
    Convex curve2021.461000.2
    Concave curve10012.432505
    下载: 导出CSV

    表  5  Mahieux模型强度和模量预报参数

    Table  5.   Mahieux model strength and modulus prediction parameters

    ClassificationPgPrPd/℃mn
    Strength/MPa282.7013.16200103
    Modulus/GPa21.4612.433010
    Notes: Pg and Pr—Strength or modulus of the material in the glass state and in the rubber state, respectively; Pd—Melting state transition temperature of the material; m and n—Weibull distribution parameter.
    下载: 导出CSV
  • [1] 梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2):1-8.

    MEI Zhiyuan. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research,2021,16(2):1-8(in Chinese).
    [2] 于霖, 王天潇. 复合材料在舰船建造中的应用[J]. 科技创新导报, 2019, 16(2):80-81.

    YU Lin, WANG Tianxiao. Application of composite materials in ship construction[J]. Science and Technology Innovation Herald,2019,16(2):80-81(in Chinese).
    [3] HAJDUKIEWICZ G, PANASIUK K, KYZIOL L. Resistance to aging research in sea water composites with the polyester-glass recyclate[J]. Journal of KONES Powertrain and Transport,2018,25(3):219-225. doi: 10.5604/01.3001.0012.4336
    [4] HAYMAN B, ECHTERMEYER A T, MCGEORGE D. Use of fibre composites in naval ships[C]//In Proceedings of the International Symposium, WARSHIP 2001 Future Surface Warships. London: Registro Italiano Navale (RINA), 2001.
    [5] PHUONG T, QUYNH T N, LAU K T. Fire performance of polymer-based composites for maritime[J]. Composite Part B: Engineering,2018,155:31-48. doi: 10.1016/j.compositesb.2018.06.037
    [6] NGO T D, NGUYEN Q T, TRAN P. Effect of nanoclay on thermomechanical properties of epoxy/glass fibre composites[J]. Arabian Journal for Science and Engineering,2016,41(4):1251-1261. doi: 10.1007/s13369-015-1898-0
    [7] SORATHIA U, NESS J, BLUM M. Fire safety of composites in the US navy[J]. Composites Part A: Applied Science and Manufacturing,1999,30(5):707-713. doi: 10.1016/S1359-835X(98)00112-2
    [8] ZHANG L F, LIU W Q, WANG L, et al. On-axis and off-axis compressive behavior of pultruded GFRP composites at elevated temperatures[J]. Composite Structures,2020,236:111891. doi: 10.1016/j.compstruct.2020.111891
    [9] 高艺航, 石玉红, 王鲲鹏, 等. 碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420高温力学性能(I)−拉伸和层间剪切性能[J]. 复合材料学报, 2016, 33(6):1206-1213.

    GAO Yihang, SHI Yuhong, WANG Kunpeng, et al. High-temperature mechanical properties of carbon fiber reinforced polyimide resin matrix composites MT300/KH420(I)—Tensile and interlaminar shear properties[J]. Acta Materiae Compositae Sinica,2016,33(6):1206-1213(in Chinese).
    [10] 高艺航, 石玉红, 王鲲鹏, 等. 聚酰亚胺树脂基MT300/KH420复合材料高温力学性能(II)−弯曲性能[J]. 复合材料学报, 2016, 33(12):2699-2705.

    GAO Yihang, SHI Yuhong, WANG Kunpeng, et al. High-temperature mechanical properties of carbon fiber reinforced polyimide resin matrix composites MT300/KH420(II)—Flexural properties[J]. Acta Materiae Compositae Sinica,2016,33(12):2699-2705(in Chinese).
    [11] WANG S Y, ZHOU Z G, ZHANG J Z, et al. Effect of temperature on bending behavior of woven fabric-reinforced PPS-based composites[J]. Journal of Materials Science, 2017, 52: 13966-13976.
    [12] 王时玉. C/PPS复合材料成型工艺参数及高温典型力学行为分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Shiyu. Analysis of molding process parameters and typical high temperatures mechanical behavior of C/PPS composites[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [13] KANDARE E, KANDOLA B K, MYLER P, et al. Thermo-mechanical responses of fiber-reinforced epoxy compo-sites exposed to high temperature environments. Part I: Experimental data acquisition[J]. Journal of Composite Materials,2010,44:3093-3114. doi: 10.1177/0021998310373511
    [14] MAHIEUX C A, REIFSNIDER K L, CASE S W. Property modeling across transition temperatures in PMC's: Part I. Tensile properties[J]. Applied Composite Materials,2001,8(4):217-234. doi: 10.1023/A:1011282704357
    [15] BISBY L A. Fire behavior of fibre-reinforced polymer (FRP) reinforced or confined concrete[D]. Kingston: Queen's University, 2003.
    [16] GIBSON A G, WU Y S, EVANS J T, et al. Laminate theory analysis of composites under load in fire[J]. Journal of Composite Materials,2006,40(7):639-658. doi: 10.1177/0021998305055543
    [17] HA S K, SPRINGER G S. Nonlinear mechanical properties of a thermoset matrix composite at elevated temperatures[J]. Journal of Composite Materials,1989,23(11):1130-1158. doi: 10.1177/002199838902301103
    [18] 中国国家标准化管理委员会. 纤维增强塑料面内压缩性能试验方法: GB/T 5258—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Fibre-reinforced plastic composites—Determination of compressive properties in the in-plane direction: GB/T 5258—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [19] 杨国威, 梅志远, 李华东, 等. 典型舰用复合材料DMA动态力学性能试验研究[J]. 玻璃钢/复合材料, 2018(6):66-72.

    YANG Guowei, MEI Zhiyuan, LI Huadong, et al. Experimental study on dynamic mechanical properties of typical naval ship composites materials[J]. Fiber Reinforced Plastics/Composites,2018(6):66-72(in Chinese).
    [20] 中国国家标准化管理委员会. 纤维增强塑料高低温力学性能试验准则: GB/T 9979—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Guide rule of test for mechanical properties of fiber-reinforced plastics at elevated and reduced temperatures: GB/T 9979—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [21] 中国国家标准化管理委员会. 石英纤维织物增强树脂基复合材料高温力学性能试验方法: GB/T 38515—2020[S]. 北京: 中国标准出版社, 2020.

    Standardization Administration of the People's Republic of China. The method for high temperature mechanical properties of quartz fabric-reinforced resin matrix composite materials: GB/T 38515—2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
    [22] 赵伟娜. 复杂热-力载荷下CFRP层合板的失效行为及破坏机理研究[D]. 北京: 中国科学院大学, 2018.

    ZHAO Weina. Failure behaviors and mechanisms of CFRP laminates subjected to combined thermal and mechanical loadings[D]. Beijing: University of Chinese Academy of Sciences, 2018(in Chinese).
    [23] 王玥. CF/PPS 复合材料高温压缩性能和冲击损伤模式分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    WANG Yue. Analysis on the compression property and implicit damage modes of CF/PPS composite at high temperatures[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [24] 张玲峰. 复合材料-木夹芯梁的传热机理和火灾后力学性能研究[D]. 南京: 东南大学, 2020.

    ZHANG Lingfeng. Heat transfer mechanism and post-fire mechanical performance of wood-cored composite sandwich[D]. Nanjing: Southeast University, 2020(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  201
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-05-05
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-05-28
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回