留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验

王春生 张洋 段兰

王春生, 张洋, 段兰. 共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验[J]. 复合材料学报, 2024, 41(1): 373-382. doi: 10.13801/j.cnki.fhclxb.20230524.003
引用本文: 王春生, 张洋, 段兰. 共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验[J]. 复合材料学报, 2024, 41(1): 373-382. doi: 10.13801/j.cnki.fhclxb.20230524.003
WANG Chunsheng, ZHANG Yang, DUAN Lan. Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 373-382. doi: 10.13801/j.cnki.fhclxb.20230524.003
Citation: WANG Chunsheng, ZHANG Yang, DUAN Lan. Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 373-382. doi: 10.13801/j.cnki.fhclxb.20230524.003

共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验

doi: 10.13801/j.cnki.fhclxb.20230524.003
基金项目: 钢桥疲劳损伤的冷维护方法及长期性能研究(51578073);长寿命高性能钢桥智能设计、建造与管养创新团队(2019TD-022)
详细信息
    通讯作者:

    王春生,博士,教授,博士生导师,研究方向为钢桥与组合结构桥梁,桥梁疲劳断裂与长寿命高性能桥梁 E-mail:wcs2000 wcs@163.com

  • 中图分类号: TU528;TB332

Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber

Funds: Research on Cold Maintenance Methods and Long Term Performance of Steel Bridge Fatigue Damage (51578073); Long Life High Performance Steel Bridge Intelligent Design, Construction, and Management Innovation Team (2019TD-022)
  • 摘要: 为探究共聚甲醛纤维超高性能水泥基复合材料(UHPFRC)的抗弯力学性能,设计并测试了5组抗弯试件,包括3组纤维单掺型试件和2组纤维混杂型试件。结果表明:共聚甲醛纤维UHPFRC试件中,纤维体积掺量为2vol%时,UHPFRC试件具有更好的抗弯强度,平均强度可达13.4 MPa;适量的共聚甲醛纤维可延缓UHPFRC基体的开裂,增强其裂前变形能力,5组试件中,2vol%共聚甲醛纤维UHPFRC试件的开裂挠度最大,可达0.65 mm;混杂纤维可更好地增强UHPFRC的抗弯强度和韧性,1.5vol%共聚甲醛纤维和1.5vol%钢纤维混掺时,UHPFRC试件抗弯强度可达13.9 MPa,同时该组试件的韧性最好。本文揭示了共聚甲醛纤维在UHPFRC抗弯力学性能方面的作用效果,对其在UHPFRC中的应用及UHPFRC的推广具有重要参考价值。

     

  • 图  1  超高性能水泥基复合材料(UHPFRC)的扩展度测试

    Figure  1.  Expansion test of ultra-high performance fiber reinforced cementitious (UHPFRC)

    图  2  数字图像测量技术 (DIC)测试配置

    Figure  2.  Test configuration of the digital image correlation (DIC) technique

    图  3  各组UHPFRC试件裂缝发展和破坏形态

    Figure  3.  Crack developments and failure modes of each group of UHPFRC specimens

    图  4  UHPFRC试件荷载-应变曲线

    Figure  4.  Load-strain curves of UHPFRC specimens

    图  5  UHPFRC试件扩展度

    Figure  5.  Expansion of UHPFRC specimens

    图  6  UHPFRC试件荷载-挠度曲线

    Figure  6.  Load-deflection curves of UHPFRC specimens

    图  7  2%POM-0%SF/C、3%POM-0%SF/C试件的断面图对比

    Figure  7.  Comparison of section diagrams of 2%POM-0%SF/C and 3%POM-0%SF/C specimens

    图  8  UHPFRC试件韧性指数趋势图

    Figure  8.  Trend diagram of toughness index of UHPFRC specimens

    图  9  UHPFRC试件韧性因子趋势图

    Figure  9.  Trend diagram of toughness factor of UHPFRC specimens

    表  1  纤维的几何与物理参数

    Table  1.   Geometrical and physical properties of fibers

    Fiber typeDensity/(g·cm−3)Diameter/mmLength/mmElastic modulus/GPaTensile stress/MPaElongation/%
    POM1.400.212≥10≥1000≤16
    SF7.850.21320-2528503.5-4
    Notes: POM—Copolymer formaldehyde fiber; SF—Steel fiber.
    下载: 导出CSV

    表  2  试件分组

    Table  2.   Specimen grouping

    GroupPOM content/vol%SF content/
    vol%
    Cement/
    (kg·m−3)
    Silica fume/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Sika viscocrete/
    (kg·m−3)
    Beads powder/
    (kg·m−3)
    Water/
    (kg·m−3)
    2%POM-0%SF/C20904.867.91258.836.8171.7165
    3%POM-0%SF/C30904.867.91258.836.8171.7165
    0%POM-3%SF/C03904.867.91258.836.8171.7165
    1%POM-1%SF/C11904.867.91258.836.8171.7165
    1.5%POM-1.5%SF/C1.51.5904.867.91258.836.8171.7165
    Note: C—Cement.
    下载: 导出CSV

    表  3  UHPFRC试件的试验结果

    Table  3.   Test results of the UHPFRC specimens

    GroupSlump flaw value/mmBending strength/MPa
    2%POM-0%SF/C42613.4
    3%POM-0%SF/C38011.6
    0%POM-3%SF/C56013.9
    1%POM-1%SF/C49512.9
    1.5%POM-1.5%SF/C46013.9
    下载: 导出CSV

    表  4  UHPFRC试件韧性指标计算结果

    Table  4.   Calculation results of toughness index of UHPFRC specimens

    GroupInitial crack
    deflection/mm
    Toughness index[29]TbToughness factor/MPa
    $ {I_5} $$ {I_{10}} $$ {I_{20}} $
    2%POM-0%SF/C 0.65 3.77 7.34 12.96 7.30 4.38
    3%POM-0%SF/C 0.41 3.52 7.81 17.39 8.40 5.04
    0%POM-3%SF/C 0.48 5.52 10.27 16.47 11.93 7.16
    1%POM-1%SF/C 0.49 4.15 7.98 13.69 10.80 6.48
    1.5%POM-1.5%SF/C 0.56 4.84 10.03 16.87 11.95 7.17
    Notes: Tb—The area under the load-deflection curve corresponding to the mid-span deflection reaching L/150 (N·mm); I5, I10, I20—The ratio of the area under the load-deflection curve corresponding to deflections of 3, 5.5, and 10.5 times the initial cracking deflection to the area under the load-deflection curve corresponding to the initial cracking deflection.
    下载: 导出CSV
  • [1] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24.

    CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering,2014,31(3):1-24(in Chinese).
    [2] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报(自然科学版), 2020, 48(1):58-68.

    CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition),2020,48(1):58-68(in Chinese).
    [3] 赵人达, 赵成功, 原元, 等. UHPC中钢纤维的应用研究进展[J]. 中国公路学报, 2021, 34(8):1-22.

    ZHAO Renda, ZHAO Chenggong, YUAN Yuan, et al. Research progress on application of steel fiber in UHPC[J]. China Journal of Highway and Transport,2021,34(8):1-22(in Chinese).
    [4] 王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20):3535-3540.

    WANG Yichao, HOU Mengjun, YU Jiangtao, et al. Experimental study on mechanical properties of ultra-high ductile cementitious composites[J]. Materials Reports,2018,32(20):3535-3540(in Chinese).
    [5] 黄政宇, 李操旺, 刘永强. 聚乙烯纤维对超高性能混凝土性能的影响[J]. 材料导报, 2014, 28(20):111-115.

    HUANG Zhengyu, LI Caowang, LIU Yongqiang. The effects of polyethylene fiber on the properties of UHPC[J]. Materials Reports,2014,28(20):111-115(in Chinese).
    [6] 赖建中, 徐升, 杨春梅, 等. 聚乙烯醇纤维对超高性能混凝土高温性能的影响[J]. 南京理工大学学报, 2013, 37(4):633-639.

    LAI Jianzhong, XU Sheng, YANG Chunmei, et al. Influence of polyvinyl alcohol fibers on the properties of ultra high performance concrete at high temperature[J]. Journal of Nanjing University of Science and Technology,2013,37(4):633-639(in Chinese).
    [7] 陈倩, 徐礼华, 吴方红, 等. 钢-聚丙烯混杂纤维增强超高性能混凝土强度试验研究[J]. 硅酸盐通报, 2020, 39(3):740-748, 755.

    CHEN Qian, XU Lihua, WU Fanghong, et al. Experimental investigation on strength of steel-polypropylene hybrid fiber reinforced ultra high performance concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(3):740-748, 755(in Chinese).
    [8] 滕晓丹, 谭又文, 李朋原, 等. 钢-高强高模量聚乙烯纤维混凝土高温后力学性能研究[J]. 硅酸盐通报, 2019, 38(4): 996-1001.

    TENG Xiaodan, TAN Youwen, LI Pengyuan, et al. Mechanical properties of steel-UHMWPE fiber reinforced concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 996-1001(in Chinese).
    [9] 晏麓晖, 张玉武, 朱林. 超高分子量聚乙烯纤维混凝土的基本力学性能[J]. 国防科技大学学报, 2014, 36(6):43-47.

    YAN Luhui, ZHANG Yuwu, ZHU Lin. Basic mechanical properties of ultra high molecular weight polyethylene fiber concrete[J]. Journal of National University of Defense Technology,2014,36(6):43-47(in Chinese).
    [10] 安宇坤, 王亚涛, 李建华. 聚甲醛纤维混凝土抗收缩与抗渗透性研究[J]. 混凝土世界, 2019(3):64-67.

    AN Yukun, WANG Yatao, LI Jianhua. Study on shrinkage and permeability of polyoxymethylene fiber reinforced concrete[J]. Concrete World,2019(3):64-67(in Chinese).
    [11] 吕锦飞. 聚甲醛纤维混凝土性能研究[D]. 扬州: 扬州大学, 2019.

    LYU Jinfei. Study on properties of POM fiber reinforced concrete[D]. Yangzhou: Yangzhou University, 2019(in Chinese).
    [12] 何越骁, 黄维蓉, 郭江川, 等. 共聚甲醛纤维超高性能混凝土高温后残余力学性能研究[J]. 硅酸盐学报, 2022, 50(3): 839-848.

    HE Yuexiao, HUANG Weirong, GUO Jiangchuan, et al. Residual mechanical properties of ultra-high performance concrete doped with copolymer formaldehyde fiber exposed to high temperature[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 839-848(in Chinese).
    [13] Swiss Society of Engineers and Architects. UHPFRC—Material, design and construction: SIA 2052[S]. Zurich: Swiss Society of Engineers and Architects, 2016.
    [14] Association Française de Normalisation. Concrete—Ultra-high-performance fibre-reinforced concrete—Specifications, performance, production and conformity: NF P18-470[S]. Saint Denis: Association Française de Normalisation, 2016.
    [15] HE W, WANG C, WANG S, et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs—Combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893
    [16] FAYYAD T M, LEES J M. Application of digital image correlation to reinforced concrete fracture[J]. Procedia Materials Science, 2014, 3: 1585-1590.
    [17] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for performance test methods of ordinary concrete mixtures: GB/T 50080—2016[S]. Beijing: China Building Industry Press, 2016(in Chinese).
    [19] ZHOU P, FENG P. Unified analysis for tailorable multi-scale fiber reinforced cementitious composites in tension[J]. Composites Part B: Engineering,2023,254:110586. doi: 10.1016/j.compositesb.2023.110586
    [20] 郭文婧, 马少鹏, 康永军, 等. 基于数字散斑相关方法的虚拟引伸计及其在岩石裂纹动态观测中的应用[J]. 岩土力学, 2011, 32(10):3196-3200.

    GUO Wenjing, MA Shaopeng, KANG Yongjun, et al. Virtual extensometer based on digital speckle correlation method and its application to deformation field evolution of rock specimen[J]. Rock and Soil Mechanics,2011,32(10):3196-3200(in Chinese).
    [21] MUNOZ H, TAHERI A, CHANDA E K. Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation[J]. Rock Mechanics and Rock Engineering,2016,49(7):2541-2554. doi: 10.1007/s00603-016-0935-y
    [22] LE D B, TRAN S D, DAO V T N, et al. Deformation capturing of concrete structures at elevated temperatures[J]. Procedia Engineering,2017,210:613-621. doi: 10.1016/j.proeng.2017.11.121
    [23] KIM D J, PARK S H, RYU G S, et al. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction and Building Materials,2011,25(11):4144-4155. doi: 10.1016/j.conbuildmat.2011.04.051
    [24] ZENG J J, ZENG W B, YE Y Y, et al. Flexural behavior of FRP grid reinforced ultra-high-performance concrete compo-site plates with different types of fibers[J]. Engineering Structures,2022,272:115020. doi: 10.1016/j.engstruct.2022.115020
    [25] 曲博扬, 卿龙邦. 钢纤维增强水泥基复合材料增韧机理研究[J]. 硅酸盐通报, 2022, 41(5): 1522-1528.

    QU Boyang, QING Longbang. Toughening mechanism of steel fiber reinforced cement matrix composite[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1522-1528(in Chinese).
    [26] American Society for Testingand Materials. Standardtest method for flexural toughness and first-crack strength of fiber-reinforced concrete using beam with third-point loading: ASTM C1018—1997[S]. West Conshohocken: American Society for Testing and Materials,1997.
    [27] JSCE. Method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete: JSCE-SF4[S]. Tokyo: Japan Society of Civil Engineering, 1984.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  191
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-04-02
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回