留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧蚀型防热/吸波多功能一体化复合材料的制备及性能

宋若康 张梦珊 戴珍 潘振雪 洪义强 朱宇

宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 271-280. doi: 10.13801/j.cnki.fhclxb.20230524.001
引用本文: 宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 271-280. doi: 10.13801/j.cnki.fhclxb.20230524.001
SONG Ruokang, ZHANG Mengshan, DAI Zhen, et al. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 271-280. doi: 10.13801/j.cnki.fhclxb.20230524.001
Citation: SONG Ruokang, ZHANG Mengshan, DAI Zhen, et al. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 271-280. doi: 10.13801/j.cnki.fhclxb.20230524.001

烧蚀型防热/吸波多功能一体化复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20230524.001
基金项目: 国家自然科学基金(52003027)
详细信息
    通讯作者:

    戴珍,博士,研究员,研究方向为防隔热复合材料 E-mail: daizhen@iccas.ac.cn

  • 中图分类号: TB332

Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing

Funds: National Natural Science Foundation of China (52003027)
  • 摘要: 本文分别以传统酚醛树脂和新型有机硅树脂为树脂基体,针刺缝合石英纤维织物为增强材料,双层电阻性超材料为吸波层,采用高压树脂传递模塑成型工艺(HP-RTM)制备了两种烧蚀防热/吸波多功能一体化复合材料。系统研究了材料的微观组织、力学性能及烧蚀对其吸波性能的影响机制。结果表明:采用传统酚醛树脂和有机硅树脂制备的两种多功能一体化复合材料组织均匀、力学性能优异,材料在2~18 GHz的平均反射率低于−10 dB,尤其在S、C、X中低频段吸波性能优异,吸收率大于90%的有效带宽大于9 GHz,这主要归因于介质层的良好透波性和双层超材料的谐振吸波效应。然而,酚醛树脂基一体化复合材料在石英灯烧蚀后,表面形成了高电导率的连续碳层,成为雷达波强反射体,导致其吸波性能几乎全部丧失,相比之下,由于有机硅树脂基一体化复合材料在烧蚀后残碳量少、不连续,其吸波性能没有明显降低,仅波形向高频偏移了2 dB,该材料在高温烧蚀隐身领域具有较大的应用潜力。

     

  • 图  1  含硼聚硅氧烷树脂(PSOB)的合成路线

    Figure  1.  Synthetic route for boron containing polysiloxane (PSOB)

    图  2  PSOB的等温黏度曲线(80℃)

    Figure  2.  Isothermal viscosity curve (80℃) of PSOB

    图  3  防热/吸波多功能一体化复合材料结构示意图

    Figure  3.  Structure diagram of multi-functional composites integrated with heat-shielding and radar-absorbing

    图  4  超材料吸波层及多功能一体化复合材料试板:(a) 超材料吸波层;(b) 1#试样;(c) 2#试样

    Figure  4.  Photos of electromagnetic metamaterial absorber sheets and multi-functional composite: (a) Metamaterial absorber sheets; (b) 1# sample; (c) 2# sample

    图  5  新型含硼硅树脂的化学结构表征:(a) FTIR图谱;(b) 1H-NMR;(c) 29Si-NMR;(d) 11B-NMR

    Figure  5.  Characterization of chemical structure of new borosilicate resins: (a) FTIR spectrum; (b) 1H-NMR; (c) 29Si-NMR; (d) 11B-NMR

    图  6  防热/吸波多功能一体化复合材料微观组织:(a) 1#表面;(b) 1#截面;(c) 2#表面;(d) 2#截面

    Figure  6.  Microstructure of multi-functional composites integratedwith heat-shielding and radar-absorbing: (a) Surface of sample 1#; (b) Cross section of sample 1#; (c) Surface of sample 2#; (d) Cross section of sample 2#

    图  7  介质层在2~18 GHz频段的法向雷达透波性能

    Figure  7.  Vertical radar transmittance of the medium layer in 2-18 GHz

    图  8  防热/吸波多功能一体化复合材料的雷达反射率

    Figure  8.  Reflection loss curves of multi-functional composites integrated with heat-shielding and radar-absorbing

    图  9  防热/吸波多功能一体化复合材料的石英灯烧蚀试验测试结果

    Figure  9.  Ablation tests of multi-functional composites integratedwith heat-shielding and radar-absorbing

    图  10  防热/吸波多功能一体化复合材料烧蚀后形貌特征:(a) 1#表面;(b) 1#截面;(c) 2#表面;(d) 2#截面

    Figure  10.  Microstructure of multi-functional composites integrated with heat-shielding and radar-absorbing after ablation: (a) Surface of sample 1#; (b) Cross section of sample 1#; (c) Surface of sample 2#; (d) Cross section of sample 2#

    图  11  防热/吸波多功能一体化复合材料烧蚀后的雷达反射率

    Figure  11.  Reflection loss curves of multi-functional composites integrated with heat-shielding and radar-absorbing after ablation

    图  12  防热/吸波多功能一体化复合材料烧蚀前后表面碳含量变化:((a), (a1)) 1#烧蚀前;((b), (b1)) 1#烧蚀后;((c), (c1)) 2#烧蚀前;((d), (d1)) 2#烧蚀后

    Figure  12.  Change of surface carbon content before and after ablation of multi-functional composites integrated with heat-shielding and radar-absorbing: ((a), (a1)) 1# before ablation; ((b), (b1)) 1# after ablation; ((c), (c1)) 2# before ablation; ((d), (d1)) 2# after ablation

    表  1  高压树脂传递模塑成型(HP-RTM)注射工艺参数

    Table  1.   Injection process parameters of high pressure resin transfer molding (HP-RTM)

    ItemsInjection
    pressure/MPa
    Injection
    temperature/℃
    Viscosity/
    (mPa·s)
    1#1.280300
    2#1.280260
    下载: 导出CSV

    表  2  防热/吸波多功能一体化复合材料的力学性能

    Table  2.   Mechanical properties of multi-functional composites integrated with heat-shielding and radar-absorbing

    Items Density/cm3 Tensile stress/MPa Modulus/GPa Elongation/% Interlaminar shear strength/MPa
    1# 1.6 95.2 8.7 1.5 32
    2# 1.5 90.4 6.3 1.6 28
    下载: 导出CSV

    表  3  防热/吸波多功能一体化复合材料雷达反射率测试

    Table  3.   Results of reflection loss tests of multi-functional composites integrated with heat-shielding and radar-absorbing

    SampleParameterf/GHzRL/dB
    1# Avg. 2.00-18.00 −10.00
    Max 2.00 −2.74
    Min 10.64 −20.54
    2# Avg. 2.00-18.00 −10.85
    Max 18.00 −3.39
    Min 11.08 −39.49
    下载: 导出CSV

    表  4  烧蚀后防热/吸波多功能一体化复合材料的雷达反射率

    Table  4.   Reflection loss of multi-functional composites integrated with heat-shielding and radar-absorbing after ablation

    SampleParameterf/GHzRL/dB
    1# Avg. 2.00-18.00 −0.52
    Max 2.00 0.27
    Min 16.72 −2.46
    2# Avg. 2.00-18.00 −10.48
    Max 18.00 −0.71
    Min 12.56 −27.47
    下载: 导出CSV
  • [1] WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering,2017,123:19-27. doi: 10.1016/j.compositesb.2017.05.005
    [2] ANANTH P B, ABHIRAM N, KRISHNA K H, et al. Synthesis of radar absorption material for stealth application[J]. Materials Today: Proceedings,2021,47:4872-4878. doi: 10.1016/j.matpr.2021.06.196
    [3] GAO Z, FAN Q, TIAN X, et al. An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth[J]. Optical Materials,2021,112(3):110793.
    [4] FU Z Y, PANG A, LUO H, et al. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design[J]. Journal of Materials Research and Technology, 2022, 18: 2770-2783.
    [5] CHENG H F, WANG J. Review on high-temperature structural radar absorbing materials[J]. Materials Review,2009,23(19):24-27.
    [6] DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials,2014,29(5):461-469.
    [7] RAN M A, FANG Y A, XI A, et al. A high-temperature structural and wave-absorbing SiC fiber reinforced Si3N4 matrix composites[J]. Ceramics International,2020,47(6):8191-8199.
    [8] WANG W, ZHANG L, DONG X, et al. Additive manufacturing of fiber reinforced ceramic matrix composites: Advances, challenges, and prospects[J]. Ceramics International,2022,48(14):19542-19556. doi: 10.1016/j.ceramint.2022.04.146
    [9] YUE H, HUANG D Q, SHI Y Q, et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials,2019,39(5):1-12.
    [10] TIAN H, LIU H T, CHENG H F. A high-temperature radar absorbing structure: Design, fabrication, and characterization[J]. Composites Science & Technology,2014,90:202-208.
    [11] LIU H T, CHENG H F, TIAN H. Design, preparation and microwave absorbing properties of resin matrix composites reinforced by SiC fibers with different electrical properties[J]. Materials Science and Engineering: B,2014,179:17-24. doi: 10.1016/j.mseb.2013.09.019
    [12] HA E H, HANG D Q, DING H Y. Application research and prospects of new and light mass radar absorbing materials[J]. Journal of Materials Engineering,2006,21(3):55-59.
    [13] 董雁瑾, 杨海升, 白以龙. 玻璃纤维增强复合材料的I型层间断裂韧性[J]. 材料研究学报, 1999, 13(2):147-152.

    DONG Yanjin, YANG Haisheng, BAI Yilong. Mode I interlaminar fracture toughness of glass woven fibric reinforced composites[J]. Journal of Materials Research,1999,13(2):147-152(in Chinese).
    [14] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9):4286-4309.

    YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4286-4309(in Chinese).
    [15] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68, 103. doi: 10.3969/j.issn.1005-9776.2021.02.012

    LIANG Yuanliang, HUANG Xianjun, YAO Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC,2021(2):61-68, 103(in Chinese). doi: 10.3969/j.issn.1005-9776.2021.02.012
    [16] ZHU X Z, GUO A Q, YAN Z Y, et al. PET/AgNW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility[J]. Nanoscale,2021,13(17):8067-8076. doi: 10.1039/D1NR00977J
    [17] 王强, 王岩, 黄小忠, 等. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2):363-367. doi: 10.11896/cldb.201902030

    WANG Qiang, WANG Yan, HUANG Xiaozhong, et al. A novel binary metamaterial absorber using all-dielectric resonance surface[J]. Materials Reports,2019,33(2):363-367(in Chinese). doi: 10.11896/cldb.201902030
    [18] 王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 39-51.

    WANG Yanzhao, XU Hexiu, WANG Chaohui, et al. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica, 2020, 69(13): 39-51(in Chinese).
    [19] ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon,2019,141:608-617. doi: 10.1016/j.carbon.2018.10.024
    [20] HUANG Y X, SONG W L, WANG C X, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption[J]. Composites Science and Technology,2018,162:206-214. doi: 10.1016/j.compscitech.2018.04.028
    [21] CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics and Laser Technology,2020,124:105972. doi: 10.1016/j.optlastec.2019.105972
    [22] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7):3303-3316.

    HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites andtheir microwave absorption properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3303-3316(in Chinese).
    [23] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinfored plastic composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [24] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinfored plastic composites—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] OYHARCABAL M, OLINGA T, FOULC M P, et al. Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites[J]. Composites Science & Technology,2013,74:107-112.
    [26] SMITH B, ZHOU J. "Snell or Fresnel": The influence of material index on hyper NA lithography[J]. Proceedings of SPIE,2007,6520:65200A. doi: 10.1117/12.713203
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  219
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-04-26
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回