留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP筋的拉伸性能劣化对其与海水海砂混凝土粘结性能的影响

郝志豪 戴建国 王召 陈建飞

郝志豪, 戴建国, 王召, 等. GFRP筋的拉伸性能劣化对其与海水海砂混凝土粘结性能的影响[J]. 复合材料学报, 2023, 40(12): 6572-6582. doi: 10.13801/j.cnki.fhclxb.20230523.001
引用本文: 郝志豪, 戴建国, 王召, 等. GFRP筋的拉伸性能劣化对其与海水海砂混凝土粘结性能的影响[J]. 复合材料学报, 2023, 40(12): 6572-6582. doi: 10.13801/j.cnki.fhclxb.20230523.001
HAO Zhihao, DAI Jianguo, WANG Zhao, et al. Effect of tensile performance degradation of GFRP bars on their bond performance with seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6572-6582. doi: 10.13801/j.cnki.fhclxb.20230523.001
Citation: HAO Zhihao, DAI Jianguo, WANG Zhao, et al. Effect of tensile performance degradation of GFRP bars on their bond performance with seawater sea-sand concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6572-6582. doi: 10.13801/j.cnki.fhclxb.20230523.001

GFRP筋的拉伸性能劣化对其与海水海砂混凝土粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20230523.001
基金项目: 国家自然科学基金(52178218;52150710542);深圳市科创委技术攻关重点项目(重2020N014)
详细信息
    通讯作者:

    陈建飞,博士,教授,博士生导师,研究方向为土木及海洋工程 E-mail: chenjf3@sustech.edu.cn

  • 中图分类号: TB302;TU528.59;TB33

Effect of tensile performance degradation of GFRP bars on their bond performance with seawater sea-sand concrete

Funds: National Natural Science Foundation of China (52178218; 52150710542); Shenzhen Science and Technology Innovation Commission Key Technology Breakthrough Project (Key 2020N014)
  • 摘要: 研究了玻璃纤维增强树脂基复合材料(Glass fiber reinforced polymer,GFRP)筋的拉伸性能劣化对其与海水海砂混凝土(Seawater sea-sand concrete,SSC)粘结性能的影响。采用10 mm直径的GFRP筋,测试了3种不同温度下模拟SSC孔溶液中GFRP筋的拉伸强度随其浸泡时间的变化规律;并通过拉拔试验测试了经上述劣化后GFRP筋和SSC界面的粘结性能,分析了界面的破坏形态、粘结-滑移曲线特征及粘结强度的变化规律。试验结果表明:随着模拟SSC孔溶液中浸泡时间的增加,GFRP筋的拉伸强度逐渐降低。与未经浸泡的GFRP筋相比,在23℃、40℃和60℃下浸泡3个月后的GFRP筋的拉伸强度分别降低25%、29%和48%。GFRP筋的拉伸性能劣化会导致其与SSC界面的粘结强度下降。与未经浸泡的GFRP筋相比,在23℃、40℃和60℃下浸泡3个月后的GFRP筋与SSC的界面强度分别下降了8%、19%和38%。

     

  • 图  1  玻璃纤维增强树脂基复合材料(GFRP)筋

    Figure  1.  Glass fiber reinforced polymer (GFRP) bar

    图  2  拉拔试件

    Figure  2.  Pullout specimen

    PVC—Polyvinyl chloride; LVDTs—Linear variable differential transformers; L—Relative displacement

    图  3  GFRP筋拉伸试件

    Figure  3.  GFRP bar specimen for tensile test

    图  4  拉拔试验装置

    Figure  4.  Pullout test setup

    图  5  GFRP筋加速劣化前后外观变化

    Figure  5.  Appearance changes of GFRP bars before and after immersion

    图  6  GFRP筋典型拉伸破坏模式

    Figure  6.  Typical tensile failure mode of GFRP bar

    图  7  GFRP筋在模拟SSC孔溶液中浸泡前后的力学性能

    Figure  7.  Mechanical properties of GFRP bars before and after immersion in simulated SSC pore solution

    图  8  拉拔试件破坏模态

    Figure  8.  Failure mode of the pullout specimen

    图  9  拉拔试验后粘结段SEM图像

    Figure  9.  SEM images of bond area after pull-out test

    图  10  劣化后的GFRP筋-SSC粘结滑移曲线

    Figure  10.  Bond-slip curves of degraded GFRP bars-SSC

    图  11  劣化后的GFRP筋-SSC粘结强度

    Figure  11.  Bond strength of degraded GFRP bars-SSC

    图  12  GFRP筋的拉伸性能劣化对其与SSC界面粘结强度的影响

    Figure  12.  Effect of tensile performance degradation of GFRP bar on its bond strength with SSC

    σt, σ0—Tensile strength of GFRP bars before and after deterioration;τt, τ0—Interfacial bond strength between reinforcement and concrete before and after deterioration; n—Fitting parameters; R2—Determination coefficient

    表  1  海水海砂混凝土(SSC)配合比

    Table  1.   Seawater sea-sand concrete (SSC) mix (kg/m3)

    OPC cementPulverized fuel ashSeawaterSea-sand20 mm
    aggregate
    10 mm
    aggregate
    Superplasticizer
    3301101657305654652.65$ \pm $2.12
    Note: OPC—Ordinary portland cement.
    下载: 导出CSV

    表  2  模拟SSC孔溶液配比[24]

    Table  2.   Composition of simulated SSC pore solution[24]

    Quantity/(g·L−1)pH
    NaOHKOHCa(OH)2NaCl
    2.419.62.035.013.4
    下载: 导出CSV

    表  3  试件浸泡方案

    Table  3.   Immersion scheme

    GroupTemperature/℃Immersion duration/d
    Control group0
    Test group23406090
    40306090
    60306090
    下载: 导出CSV

    表  4  模拟SSC孔溶液浸泡前后GFRP筋的拉伸试验结果

    Table  4.   Tensile test results of GFRP bars before and after immersion in simulated SSC pore solution

    Tensile
    strength/
    MPa
    Average/
    MPa
    Coefficient of
    variation/%
    Residual
    strength/%
    Modulus of
    elasticity/
    GPa
    Average/
    GPa
    Coefficient of
    variation/%
    Residual
    modulus of
    elasticity/%
    Ref. bars 1 1126.0 1134.0 2.59 100.0 47.0 46.4 3.11 100.0
    2 1175.0 47.9
    3 1106.0 44.5
    4 1128.0 46.2
    T23 D40 1 921.8 957.7 2.71 84.5 49.5 48.7 1.55 105.0
    2 981.8 48.9
    3 956.8 47.7
    4 970.2 48.8
    T23 D60 1 920.6 875.7 3.62 77.2 49.7 48.7 1.93 105.0
    2 873.4 49.0
    3 848.0 47.5
    4 860.7 48.5
    T23 D90 1 853.7 850.8 2.06 75.0 45.2 44.8 1.04 96.5
    2 871.5 44.1
    3 828.9 45.0
    4 849.3 44.8
    T40 D30 1 853.1 887.8 3.73 78.3 48.5 48.1 1.44 104.0
    2 930.7 47.6
    3 893.8 48.9
    4 873.4 47.5
    T40 D60 1 869.6 838.7 4.18 74.0 47.9 47.1 1.71 102.0
    2 804.7 47.1
    3 868.3 46.0
    4 812.3 47.5
    T40 D90 1 841.6 805.6 6.94 71.1 42.4 43.3 1.91 93.3
    2 849.3 44.4
    3 727.0 43.1
    4 804.7 43.3
    T60 D30 1 878.5 785.1 8.79 69.2 44.5 42.7 3.56 92.0
    2 713.0 40.8
    3 765.9 43.0
    4 783.0 42.3
    T60 D60 1 692.6 648.4 12.30 57.2 39.2 41.3 4.38 89.0
    2 725.7 42.8
    3 544.9 42.8
    4 630.3 40.3
    T60 D90 1 618.8 589.2 9.99 52.0 39.4 40.3 2.95 87.0
    2 505.5 41.7
    3 639.2 39.3
    4 593.3 41.0
    Note: T, D— Tempertaure (℃) and time (day).
    下载: 导出CSV

    表  5  GFRP筋-SSC粘结强度试验结果

    Table  5.   Test results of GFRP bar-SSC bond strength

    SpecimensBond strength/MPaCoefficient of variation/%Residual bond strength/%
    No.1No.2No.3Average
    Ref. 18.9 19.9 20.0 19.6 3.14 100.0
    T23 D40 19.3 18.5 19.8 19.2 3.42 98.0
    T23 D60 17.5 20.0 16.7 18.1 9.66 92.2
    T23 D90 18.9 17.3 17.9 18.0 4.28 92.0
    T40 D30 18.5 18.1 18.1 18.2 1.46 93.0
    T40 D60 18.2 15.4 17.9 17.2 9.07 87.7
    T40 D90 15.1 16.1 16.5 15.9 4.48 81.0
    T60 D30 14.9 16.1 17.1 16.1 6.88 81.9
    T60 D60 13.4 13.6 13.2 13.4 1.47 68.4
    T60 D90 12.0 11.5 12.8 12.1 5.52 61.8
    下载: 导出CSV
  • [1] ROBERT M, BENMOKRANE B. Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars[J]. Construction and Building Materials,2013,38:274-284. doi: 10.1016/j.conbuildmat.2012.08.021
    [2] WANG X, WU G, WU Z S, et al. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment[J]. Materials & Design,2014,64:721-728. doi: 10.1016/j.matdes.2014.07.064
    [3] BENMOKRANE B, NAZAIR C, LORANGER M A, et al. Field durability study of vinyl-ester-based GFRP rebars in concrete bridge barriers[J]. Journal of Bridge Engineering, 2018, 23(12): 4018094.
    [4] TENG J G, YU T, DAI J G, et al. FRP composites in new construction: Current status and opportunities[C]//XU X Q. 7th National Conference on FRP Composites in Infrastructure. Hangzhou: Industrial Construction Magazine Agency, 2011: 179-186.
    [5] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [6] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173)
    [7] TASTANI S P, PANTAZOPOULOU S J. Bond of GFRP bars in concrete: Experimental study and analytical interpretation[J]. Journal of Composites for Construction,2006,10(5):381-391. doi: 10.1061/(ASCE)1090-0268(2006)10:5(381)
    [8] DONG Z Q, WU G, ZHAO X L, et al. Long-term bond durability of fiber-reinforced polymer bars embedded in seawater sea-sand concrete under ocean environments[J]. Journal of Composites for Construction,2018,22(5):04018042. doi: 10.1061/(ASCE)CC.1943-5614.0000876
    [9] YAN F, LIN Z B. Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions[J]. Composite Structures,2017,161:393-406. doi: 10.1016/j.compstruct.2016.11.055
    [10] ALTALMAS A, EL REFAI A, ABED F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials,2015,81:162-171. doi: 10.1016/j.conbuildmat.2015.02.036
    [11] EL REFAI A, ABED F, ALTALMAS A. Bond durability of basalt fiber-reinforced polymer bars embedded in concrete under direct pullout conditions[J]. Journal of Composites for Construction,2015,19(5):04014078. doi: 10.1061/(ASCE)CC.1943-5614.0000544
    [12] DONG Z Q, WU G, XU B, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Materials & Design,2016,92:552-562.
    [13] ZHOU J K, CHEN X D, CHEN S X. Durability and service life prediction of GFRP bars embedded in concrete under acid environment[J]. Nuclear Engineering and Design,2011,241(10):4095-4102. doi: 10.1016/j.nucengdes.2011.08.038
    [14] EMPARANZA A R, DE CASO Y B F, KAMPMANN R, et al. Evaluation of the bond-to-concrete properties of GFRP rebars in marine environments[J]. Infrastructures, 2018, 3(4): 44.
    [15] ROBERT M, BENMOKRANE B. Effect of aging on bond of GFRP bars embedded in concrete[J]. Cement and Concrete Composites,2010,32(6):461-467. doi: 10.1016/j.cemconcomp.2010.02.010
    [16] ZHOU J K, CHEN X D, CHEN S X. Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars[J]. Journal of Civil Engineering,2012,16(6):994-1002.
    [17] OKELO R, YUAN R L. Bond strength of fiber reinforced polymer rebars in normal strength concrete[J]. Journal of Composites for Construction,2005,9(3):203-213. doi: 10.1061/(ASCE)1090-0268(2005)9:3(203)
    [18] YAN F, LIN Z B, ZHANG D L, et al. Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution[J]. Composites Part B: Engineering,2017,116:406-421. doi: 10.1016/j.compositesb.2016.10.083
    [19] YAN F, LIN Z B, YANG M J. Bond mechanism and bond strength of GFRP bars to concrete: A review[J]. Compo-sites Part B: Engineering,2016,98:56-69. doi: 10.1016/j.compositesb.2016.04.068
    [20] CHEN Y, DAVALOS J F, RAY I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of Composites for Construction,2006,10(4):279-286. doi: 10.1061/(ASCE)1090-0268(2006)10:4(279)
    [21] BENMOKRANE B, ELGABBAS F, AHMED E A, et al. Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars[J]. Journal of Composites for Construction, 2015, 19(6): 04015008.
    [22] WANG Z K, ZHAO X L, XIAN G J, et al. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials,2017,156:985-1004. doi: 10.1016/j.conbuildmat.2017.09.045
    [23] American Society for Testing and Materials. Standard test method for alkali resistance of fiber reinforced polymer (FRP) matrix composite bars used in concrete construction: ASTM-D7705-12[S]. West Conshohocken: American Society for Testing and Materials International, 2012.
    [24] WANG Z K, ZHAO X L, XIAN G J, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials,2017,139:467-489. doi: 10.1016/j.conbuildmat.2017.02.038
    [25] American Society for Testing and Materials. Standard test method for bond strength of fiber-reinforced polymer matrix composite bars to concrete by pullout testing: ASTM D7913[S]. West Conshohocken: American Society for Testing and Materials International, 2014.
    [26] BANK L C, GENTRY T R, BARKATT A, et al. Accelerated test methods to determine the long-term behavior of FRP composite structures: Environmental effects[J]. Journal of Reinforced Plastics and Composites,1995,14(6):559-587. doi: 10.1177/073168449501400602
    [27] PHANI K K, BOSE N R. Temperature dependence of hydrothermal ageing of CSM-laminate during water immersion[J]. Composites Science and Technology,1987,29(2):79-87. doi: 10.1016/0266-3538(87)90050-9
    [28] DONG Z Q, WU G, ZHAO X L, et al. A refined prediction method for the long-term performance of BFRP bars serviced in field environments[J]. Construction and Building Materials,2017,155:1072-1080. doi: 10.1016/j.conbuildmat.2017.07.154
    [29] LIAO J J, ZENG J J, BAI Y L, et al. Bond strength of GFRP bars to high strength and ultra-high strength fiber reinforced seawater sea-sand concrete (SSC)[J]. Composite Structures, 2022, 281: 115013.
    [30] DONG Z Q, WU G, XU B, et al. Bond performance of alkaline solution pre-exposed FRP bars with concrete[J]. Magazine of Concrete Research,2018,70(17):894-904. doi: 10.1680/jmacr.17.00027
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  171
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-05-10
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回