留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏氟乙烯基复合材料及其在储能器件中的应用

陆澎 王欣雨 梁环 胡欣 陆春华

陆澎, 王欣雨, 梁环, 等. 聚偏氟乙烯基复合材料及其在储能器件中的应用[J]. 复合材料学报, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001
引用本文: 陆澎, 王欣雨, 梁环, 等. 聚偏氟乙烯基复合材料及其在储能器件中的应用[J]. 复合材料学报, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001
LU Peng, WANG Xinyu, LIANG Huan, et al. Polyvinylidene fluoride-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001
Citation: LU Peng, WANG Xinyu, LIANG Huan, et al. Polyvinylidene fluoride-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4943-4957. doi: 10.13801/j.cnki.fhclxb.20230509.001

聚偏氟乙烯基复合材料及其在储能器件中的应用

doi: 10.13801/j.cnki.fhclxb.20230509.001
基金项目: 国家自然科学基金(22278205;21604037);中石化委托项目(420106)
详细信息
    通讯作者:

    胡欣,博士,副教授,硕士生导师,研究方向为聚合物基介电储能材料 E-mail: xinhu@njtech.edu.cn

    陆春华,博士,教授,博士生导师,研究方向为光谱的选择性吸收及能量转换利用 E-mail: chhlu@njtech.edu.cn

  • 中图分类号: O631.1;O632.2;TB332

Polyvinylidene fluoride-based composites and their application in energy storage devices

Funds: National Natural Science Foundation of China (22278205; 21604037); Sinopec Ministry of Science; Technology Basic Prospective Research Project (420106)
  • 摘要: 随着我国“双碳”战略的稳步实施,发展具有“三高一长一低一环”(即高能量密度、高功率密度、高安全性、长循环稳定性、低成本及环保)的电池、超级电容器等能量存储设备,对助力可再生能源的高效存储与稳定输出、推动我国电力系统绿色转型具有重要意义。聚偏氟乙烯(PVDF)基含氟聚合物由于具有良好的力学性能、电学性能及化学稳定性等,已被广泛地用于电池及超级电容器的电极粘结剂、隔膜以及电解质材料。随着储能器件的快速发展,对PVDF基含氟聚合物进行功能化复合以满足对于电池、超级电容器“三高一长一低一环”的需求,成为PVDF基聚合物复合材料的发展重点。本文系统介绍了PVDF基聚合物及其复合材料分别作为粘结剂、电解质和隔膜材料应用于电池及超级电容器的情况,比较了不同功能化复合改性方法对PVDF基聚合物材料性能提升的作用机制,对PVDF基复合材料应用于储能领域的发展前景和挑战进行了展望。

     

  • 图  1  聚偏氟乙烯(PVDF)的分子结构[52]

    Figure  1.  Molecular structure of polyvinylidene fluoride (PVDF)[52]

    图  2  硅电极材料的合成及工作机制:(a) 以偏氟乙烯(VDF)和四氟乙烯(TFE)为前驱体合成PVDF-b-PTFE的一般工艺;(b) 在电化学反应中使用嵌段共聚物粘合剂稳定硅电极的示意图[10]

    Figure  2.  Synthesis and working mechanism of silicon electrode materials: (a) Synthesis of PVDF-b-PTFE using vinylidene fluoride (VDF) and tetrafluoroethylene (TFE) as precursors; (b) Schematic diagram of using block copolymer binder to stabilize silicon electrode in electrochemical reaction[10]

    图  3  MnO2与不同粘结剂电子转移的原理图[39]

    Figure  3.  Schematic diagram of electron transfer between MnO2 and different binders [39]

    图  4  杨梅状二氧化硅纳米颗粒(BSNPs)纳米粒子合成示意图[20]

    Figure  4.  Schematic diagram of synthesis of bayberry silica nanoparticles (BSNPs) nanoparticles[20]

    TEOS—Tetraethyl orthosilicate; TEAH3—Triethanolamine; CATB—Cetyltrimethylammonium bromide

    图  5  (a) 氧化石墨烯(rGO)-聚乙二醇(PEG)-NH2的分子结构图;(b) 锂离子输运网络示意图[21]

    Figure  5.  (a) Molecular structure diagram of graphene oxide (rGO)-polyethylene glycol (PEG)-NH2; (b) Schematic diagram of lithium ion transport network[21]

    HFP—Hexafluoropropylene

    图  6  PVDF/Si3N4隔膜制备工艺示意图[27]

    Figure  6.  Schematic diagram of PVDF/Si3N4 separator preparation process[27]

    图  7  静电纺丝多层结构MnO2/P(VDF-HFP)-聚间苯二甲酰间苯二甲酰胺(PMIA)隔膜的制备及其电池组装示意图[34]

    Figure  7.  Preparation of electrospun multilayer MnO2/P(VDF-HFP)-polyisophenyl-isophenamide (PMIA) separator and its battery assembly schematic diagram[34]

    表  1  以PVDF及其共聚物为基体的复合材料在储能器件中的应用

    Table  1.   Application of composite materials based on PVDF and its copolymer in energy storage devices

    DevicesMaterialsComposite structureElectrolyte uptake/%Ionic conductivity/
    (S·cm−1)
    Electrochemical window/VIonic transference
    number
    Discharge capacity/
    (mA·h·g−1)
    (at 1.0 C)
    Ref.
    BatteriesBinderPVDF4.2185[7]
    P(VDF-HFP)3.4123[8]
    P(VDF-TrFE)94.3[9]
    PVDF-b-PTFE71155[10]
    PEO/PVDF4.2112[11]
    PE-b-PEG/PVDF4.0110[12]
    TX/PVDF4.0150.1[13]
    CMC/PVDF4.2376[14]
    PAA/PVDF3.0364[15]
    Electrolyteh-BN/PVDF2.98×10−45.240.62142.3[16]
    P(VDF-TrFE-CTFE)/P(VDF-TrFE)2.37×10−44.150.61[17]
    TEGDME/MgBr2/PVDF1.2×10−60.55[18]
    SiO2/P(VDF-HFP)1.3×10−45.5140.0[19]
    BSNPs/P(VDF-HFP)3243.29×10−40.63178.6[20]
    rGO-PEG-NH2/P(VDF-HFP)2.1×10−35.00.45144.7[21]
    LLZTO/PEO/P(VDF-HFP)1.05×10−45.20.52121.9[22]
    LAGP/PEO/P(VDF-HFP)3803.27×10−34.90.34118[23]
    LMS/LiODFB/P(VDF-HFP)2.51×10−44.80.80132.4[24]
    SeparatorPVDF257.41.2×10−35.0141[25]
    PEI-PVDF5202.3×10−35.0125.4[26]
    Si3N4/PVDF437.24.1×10−35.480[27]
    PP/PVDF2951.25×10−34.872.2[28]
    Al2O3/PVDF487512[29]
    LLZTO/PVDF1.4×10−40.66124[30]
    PI/P(VDF-HFP)3501.46×10−35.2[31]
    PI/P(VDF-HFP)483.51.78×10−34.94120.4[32]
    PAN/PVDF-HFP1.2×10−35.0146[33]
    MnO2/PMIA/P
    (VDF-HFP)
    2.27×10−35.01140.2[34]
    TiO2/Cellulose/P
    (VDF-HFP)
    4031.68×10−34.5205[35]
    C-TiO2/Cellulose/P
    (VDF-HFP)
    210.31.49×10−35.2157[36]
    Super-
    capacitors
    BinderPVDF[37]
    PVDF[38]
    Graphene/PVDF[39]
    RGO/PVDF[40]
    ElectrolytePVA/BaTiO3/PVDF[41]
    SiO2/PVDF2.8[42]
    GO/P(VDF-HFP)342.44.23×10−4[43]
    P(VDF-HFP)25014.4×10−32.9[44]
    P(VDF-HFP)2.07×10−45.00.22[45]
    SeparatorPVDF200.22.5[46]
    SiO2/P(VDF-HFP)2020.847×10−34.3124.4[47]
    P(VDF-HFP)1120.60×10−34.60.30[48]
    ZrO2/P(VDF-HFP)3200.60×10−33.0[49]
    PVDF3601.8×10−33.3[50]
    PVDF4264.32×10−33.4145[51]
    Notes: PEO—Polyethylene oxide; PE-b-PEG—Polyethylene-b-polyethylene glycol; CMC—Carboxyl methyl cellulose; CTFE—Chlorotrifluoroethylene; PAA —Polyacrylic acid; PEI—Polyetherimide; PVA—Polyvinyl alcohol.
    下载: 导出CSV
  • [1] NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today,2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040
    [2] PING Y, JIN-RAN S U. Technology and application progress of lithium ion battery[J]. Chinese Journal of Power Sources,2009,33(11):1037-1039.
    [3] XIE H, TANG Z, LI Z, et al. PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2008,12(11):1497-1502. doi: 10.1007/s10008-008-0511-9
    [4] BURKE A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [5] YOO M, FRANK C W, MORI S, et al. Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery[J]. Polymer,2003,44(15):4197-4204. doi: 10.1016/S0032-3861(03)00364-1
    [6] HE J Y, LIU J Q, LI J, et al. Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane[J]. Materials Letters,2016,170:126-129. doi: 10.1016/j.matlet.2016.02.010
    [7] LOGHAVI M M, BAHADORIKHALILI S, LARI N, et al. The effect of crystalline microstructure of PVDF binder on mechanical and electrochemical performance of lithium-ion batteries cathode[J]. Zeitschrift für Physikalische Chemie,2020,234(3):381-397.
    [8] DONG Y Z, ZHAO Y M, CHEN Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics,2009,115(1):245-250. doi: 10.1016/j.matchemphys.2008.11.063
    [9] GöREN A, COSTA C M, SILVA M M, et al. Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes[J]. Solid State Ionics,2016,295:57-64. doi: 10.1016/j.ssi.2016.07.012
    [10] WANG X, LIU S, ZHANG Y, et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(34):38132-38139.
    [11] LIANG X H, WU X, WANG Y T, et al. Study on preparation and performance of PEO-PVDF composite binder for lithium ion batteries[J]. International Journal of Electrochemical Science,2020,15(9):8471-8478.
    [12] ZHENG M, FU X, WANG Y, et al. Poly(vinylidene fluoride)-based blends as new binders for lithium-ion batteries[J]. ChemElectroChem,2018,5(16):2288-2294. doi: 10.1002/celc.201800553
    [13] LIU S, ZHONG H, ZHANG C, et al. Improving the processability and cycling stability of nano-LiFePO4 cathode by using PVDF/TX binary binder[J]. Composite Interfaces,2019,26(11):1013-1024. doi: 10.1080/09276440.2019.1578574
    [14] TOIGO C, SINGH M, GMEINER B, et al. A method to measure the swelling of water-soluble PVDF binder system and its electrochemical performance for lithium ion batteries[J]. Journal of The Electrochemical Society,2020,167(2):020514. doi: 10.1149/1945-7111/ab68c2
    [15] NAGULAPATI V M, LEE J H, KIM H S, et al. Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTe bi-metallic anode for sodium ion batteries[J]. Journal of Electroanalytical Chemistry,2020,865(7):114160.
    [16] ZHAO Y, QIN Y, DA X, et al. High lithium salt content PVDF-based solid-state composite polymer electrolyte enhanced by h-BN nanosheets[J]. ChemSusChem,2022,15(24):e202201554.
    [17] HUANG Y, ZENG J, LI S, et al. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation[J]. Advanced Energy Materials,2023,13(15):2203888. doi: 10.1002/aenm.202203888
    [18] MESALLAM M, KAMAR E M, SHARMA N, et al. Synthesis and characterization of polyvinylidene fluoride/magnesium bromide polymer electrolyte for magnesium battery application[J]. Physica Scripta,2020,95(11):115805. doi: 10.1088/1402-4896/abbcf4
    [19] SONG S, TAN X, ZHAI Y, et al. Ultrathin, compacted gel polymer electrolytes enable high-energy and stable-cycling 4 V lithium-metal batteries[J]. ChemElectroChem,2020,7(17):3656-3662. doi: 10.1002/celc.202000955
    [20] GUO J, HOU H B, CHENG J M, et al. Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries[J]. Journal of Materials Science: Materials in Electronics,2021,32(5):1-13.
    [21] XU P, CHEN H, ZHOU X, et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery[J]. Journal of Membrane Science,2021,617:118660. doi: 10.1016/j.memsci.2020.118660
    [22] HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery[J]. Energy & Fuels,2020,34(11):15011-15018.
    [23] LIU Q, LIU Y, JIAO X, et al. Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries[J]. Energy Storage Materials,2019,23:105-111. doi: 10.1016/j.ensm.2019.05.023
    [24] TAO S, LI J, HU R, et al. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries[J]. Applied Surface Science,2021,536(30):147794.
    [25] TABANI Z, MAGHSOUDI H, ZONOUZ A F. High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2021,25(2):651-657. doi: 10.1007/s10008-020-04842-5
    [26] 崔巍巍, 孟庆朋, 王振宇, 等. 大倍率高耐热聚醚酰亚胺-聚偏氟乙烯芯壳纳米纤维锂离子电池隔膜[J]. 复合材料学报, 2019, 36(1):69-76. doi: 10.13801/j.cnki.fhclxb.20180503.001

    CUI Weiwei, MENG Qingpeng, WANG Zhenyu, et al. Large power and high heat resistance polyetherimide polyvinylidene fluoride core-shell nanofiber lithium ion battery separator[J]. Acta Materiae Compositae Sinica,2019,36(1):69-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180503.001
    [27] MA X, QIAO F, QIAN M, et al. Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries[J]. Scripta Materialia,2021,190:153-157. doi: 10.1016/j.scriptamat.2020.08.053
    [28] JANAKIRAMAN S, KHALIFA M, BISWAL R, et al. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries[J]. Journal of Power Sources,2020,460:228060. doi: 10.1016/j.jpowsour.2020.228060
    [29] 徐玲倩, 陈关喜, 吴清洲, 等. Al2O3/PVDF无纺布锂离子电池隔膜的制备及性能表征[J]. 材料科学与工程学报, 2019, 37(5):689-696.

    XU Lingqing, CHEN Guanxi, WU Qingzhou, et al. Preparation and characterization of Al2O3/PVDF non-woven lithium ion battery separator[J]. Journal of Materials Science and Engineering,2019,37(5):689-696(in Chinese).
    [30] HUO H, LI X, CHEN Y, et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries[J]. Energy Storage Materials,2020,29:361-366. doi: 10.1016/j.ensm.2019.12.022
    [31] CHEN W, LIU Y, MA Y, et al. Improved performance of PVDF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method[J]. Materials Letters,2014,133:67-70. doi: 10.1016/j.matlet.2014.06.163
    [32] CAI M, YUAN D, ZHANG X, et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking[J]. Journal of Power Sources,2020,461:228123. doi: 10.1016/j.jpowsour.2020.228123
    [33] LIU Q, JIANG W, LU W, et al. Anisotropic semi-aligned PAN@PVDF-HFP separator for Li-ion batteries[J]. Nanotechnology,2020,31(43):435701. doi: 10.1088/1361-6528/aba303
    [34] ZHAO H, DENG N, KANG W, et al. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security[J]. Chemical Engineering Journal,2020,390:124571. doi: 10.1016/j.cej.2020.124571
    [35] ASGHAR M R, ANWAR M T, XIA G, et al. Cellulose/poly(vinylidene fluoride hexafluoropropylene) composite membrane with titania nanoparticles for lithium-ion batteries[J]. Materials Chemistry and Physics,2020,252:123122. doi: 10.1016/j.matchemphys.2020.123122
    [36] LI L, LI H, WANG Y, et al. Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries[J]. Ionics,2020,26(9):4489-4497. doi: 10.1007/s11581-020-03587-5
    [37] LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [38] ZHU Z T, TANG S H, YUAN J W, et al. Effects of various binders on supercapacitor performances[J]. International Journal of Electrochemical Science,2016,11(10):8270-8279.
    [39] DONG J Y, WANG Z Y, KANG X H. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors[J]. Colloids and Surfaces A—Physicochemical and Engineering Aspects,2016,489:282-288.
    [40] SONG D H, KIM J Y, AN J Y, et al. Graphene-based supercapacitor performance enhancement by an immersion precipitation of poly(vinylidene fluoride) binder[J]. Materials Research Express,2019,6(10):105616. doi: 10.1088/2053-1591/ab3cee
    [41] AVAL L F, GHORANNEVISS M, POUR G B. Graphite nanoparticles paper supercapacitor based on gel electrolyte[J]. Materials for Renewable and Sustainable Energy,2018,7(4):29. doi: 10.1007/s40243-018-0136-6
    [42] ORTEGA P F R, TRIGUEIRO J P C, SILVA G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochi-mica Acta,2016,188:809-817. doi: 10.1016/j.electacta.2015.12.056
    [43] AHMAD A L, FAROOQUI U R, HAMID N A. Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane[J]. Polymer,2018,142:330-336. doi: 10.1016/j.polymer.2018.03.052
    [44] YANG C Y, SUN M Q, WANG X, et al. A novel flexible supercapacitor based on cross-linked PVDF-HFP porous organogel electrolyte and carbon nanotube paper@PI-conjugated polymer film electrodes[J]. ACS Sustainable Chemistry& Engineering,2015,3(9):2067-2076.
    [45] SHALU, SINGH V K, SINGH R K. Development of ion conducting polymer gel electrolyte membranes based on polymer PVDF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties[J]. Journal of Materials Chemistry C,2015,3(28):7305-7318. doi: 10.1039/C5TC00940E
    [46] ARTHI R, JAIKUMAR V, MURALIDHARAN P. Development of electrospun PVdF polymer membrane as separator for supercapacitor applications[J]. Energy Sources Part A: Recovery, Utilization and Environmental Effects,2019,44(1):1-15.
    [47] WANG H, GAO H P. A sandwich-like composite nonwoven separator for Li-ion batteries[J]. Electrochimica Acta,2016,215:525-534. doi: 10.1016/j.electacta.2016.08.039
    [48] YANG Y Q, CHANG Z, LI M X, et al. A sodium ion conducting gel polymer electrolyte[J]. Solid State Ionics,2014,269:1-7.
    [49] YADAV N, MISHRA K, HASHMI S A. Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers,2018,30(8):957-970. doi: 10.1177/0954008318774392
    [50] HE T S, JIA R, LANG X S, et al. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor[J]. Journal of the Electrochemical Society,2017,164(13):E379-E384. doi: 10.1149/2.0631713jes
    [51] RAGHAVAN P, ZHAO X, MANUEL J, et al. Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study[J]. Materials Research Bulletin,2010,45(3):362-366. doi: 10.1016/j.materresbull.2009.12.001
    [52] 赵世怀, 张翠翠, 杨紫博, 等. PVDF/PVA复合膜的制备与性能研究[J]. 化工新型材料, 2018, 46(5):60-63.

    ZHAO Shihuai, ZHANG Cuicui, YANG Zibo, et al. Preparation and properties of PVDF/PVA composite membranes[J]. New Chemical Materials,2018,46(5):60-63(in Chinese).
    [53] MALEKI H, DENG G P, KERZHNER-HALLER I, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(12):4470-4475. doi: 10.1149/1.1394088
    [54] EOM J Y, CAO L. Effect of anode binders on low-temperature performance of automotive lithium-ion batteries[J]. Journal of Power Sources,2019,441(2):227178.
    [55] ROTH E P, DOUGHTY D H, FRANKLIN J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources,2004,134(2):222-234. doi: 10.1016/j.jpowsour.2004.03.074
    [56] ZHENG X, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials,2019,16:6-23. doi: 10.1016/j.ensm.2018.04.014
    [57] PARULEKAR S, SHOLAPURE S, HOLMUKHE R, et al. Study of PVDF Based Electrode Structure in Supercapacitors[J]. International Journal of Engineering and Technology,2018,7(4):313-315.
    [58] WANG B, JI J, LI K. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration[J]. Nature Communications,2016,7(1):12804. doi: 10.1038/ncomms12804
    [59] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [60] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials,2019,31(50):1902029. doi: 10.1002/adma.201902029
    [61] ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem,2019,5(9):2326-2352. doi: 10.1016/j.chempr.2019.05.009
    [62] LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A,2016,4(26):10038-10069. doi: 10.1039/C6TA02621D
    [63] LIU S, LIU W, BA D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries[J]. Advanced Materials,2023,35(2):2110423. doi: 10.1002/adma.202110423
    [64] CHEN S, WANG J, ZHANG Z, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources,2018,387:72-80. doi: 10.1016/j.jpowsour.2018.03.016
    [65] CHEN S, WEN K, FAN J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. Journal of Materials Chemistry A,2018,6(25):11631-11663. doi: 10.1039/C8TA03358G
    [66] SINGH R, JANAKIRAMAN S, KHALIFA M, et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science: Materials in Electronics,2020,31(24):22912-22925. doi: 10.1007/s10854-020-04818-1
    [67] JEEDI V R, NARSAIAH E L, YALLA M, et al. Structural and electrical studies of PMMA and PVDF based blend polymer electrolyte[J]. Sn Applied Sciences,2020,2(12):2093. doi: 10.1007/s42452-020-03868-8
    [68] RAJEH A, RAGAB H M, ABUTALIB M M. Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications[J]. Journal of Molecular Structure,2020,1217(7):128447.
    [69] LEE Y Y, LIU Y L. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery[J]. Electrochimica Acta,2017,258:1329-1335. doi: 10.1016/j.electacta.2017.11.191
    [70] SHAN Y, LI L, CHEN X, et al. Gentle haulers of lithium-ion–nanomolybdenum carbide fillers in solid polymer electrolyte[J]. ACS Energy Letters,2022,7(7):2289-2296. doi: 10.1021/acsenergylett.2c00849
    [71] JIA H, ONISHI H, VON ASPERN N, et al. A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries[J]. Journal of Power Sources,2018,397:343-351. doi: 10.1016/j.jpowsour.2018.07.039
    [72] ZHANG Y, WANG X, FENG W, et al. Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries[J]. Ionics,2019,25(4):1471-1480. doi: 10.1007/s11581-018-2706-0
    [73] MA W T, KUMAR S R, HSU C T, et al. Magnetic field-assisted alignment of graphene oxide nanosheets in a polymer matrix to enhance ionic conduction[J]. Journal of Membrane Science,2018,563:259-269. doi: 10.1016/j.memsci.2018.05.062
    [74] LUO J, FANG C C, WU N L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials,2017,8(6):1701482.
    [75] WAQAS M, ALI S, LV W, et al. High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries[J]. Advanced Materials Interfaces,2019,6(1):1801330. doi: 10.1002/admi.201801330
    [76] YANG F, SUN W, BAI Y, et al. Rational design of sandwich-like "Gel-Liquid-Gel" electrolytes for dendrite-free lithium metal batteries[J]. Industrial & Engineering Chemistry Research,2020,59(32):14207-14216.
    [77] NUNES-PEREIRA J, COSTA C M, LANCEROS-MENDEZ S. Polymer composites and blends for battery separators: State of the art, challenges and future trends[J]. Journal of Power Sources,2015,281(4):378-398.
    [78] YANG X, ZHANG F, ZHANG L, et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials,2013,23(26):3353-3360. doi: 10.1002/adfm.201203556
    [79] GSAIZ P, LOPES A C, BARKER S E, et al. Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes[J]. Materials & Design,2018,155(29):325-333.
    [80] BARBOSA J C, DIAS J P, LANCEROS-MENDEZ S, et al. Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators[J]. Membranes,2018,8(3):45. doi: 10.3390/membranes8030045
    [81] LIN W, WANG F, WANG H, et al. Thermal-stable separators: Design principles and strategies towards safe lithium-ion battery operations[J]. ChemSusChem,2022,15(24):e202201464.
    [82] RAGHAVENDRA K V G, VINOTH R, ZEB K, et al. An intuitive review of supercapacitors with recent progress and novel device applications[J]. Journal of Energy Storage,2020,31(9):101652.
    [83] 郑怡磊, 吴于松, 许远远, 等. 高性能锂离子电池隔膜的研究进展[J]. 有机氟工业, 2018, 181(4):21-26.

    ZHENG Yilei, WU Yusong, XU Yuanyuan, et al. Research progress of high-performance lithium-ion battery separator[J]. Organic-Fluorine Industry,2018,181(4):21-26(in Chinese).
    [84] COSTA C M, SILVA M M, LANCEROS-MENDEZ S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. RSC Advances,2013,3(29):11404-11417. doi: 10.1039/c3ra40732b
    [85] WANG S X, YAP C C, HE J, et al. Electrospinning: A facile technique for fabricating functional nanofibers for environmental applications[J]. Nanotechnology Reviews,2016,5(1):51-73.
    [86] WU Y S, YANG C C, LUO S P, et al. PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries[J]. International Journal of Hydrogen Energy,2017,42(10):6862-6875. doi: 10.1016/j.ijhydene.2016.11.201
    [87] ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces,2018,5(5):1701147. doi: 10.1002/admi.201701147
    [88] SZUBZDA B, SZMAJA A, OZIMEK M, et al. Polymer membranes as separators for supercapacitors[J]. Applied Physics A-Materials Science & Processing,2014,117(4):1801-1809.
    [89] WANG J A, LIN S C, WANG Y S, et al. Bi-functional water-born polyurethane-potassium poly(acrylate) designed for carbon-based electrodes of quasi solid-state supercapacitors: Establishing ionic tunnels and acting as a binder[J]. Journal of Power Sources,2019,413(21):77-85.
    [90] HASHIM M A, SA'ADU L, BAHARUDDIN M B, et al. Using PVA, methacrylate and lauroyl chitosan as separator in supercapacitors[J]. Journal of Materials Science Research, 2013, 3(1): 25-29.
    [91] NA R Q, ZHANG X R, HUO P F, et al. High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes[J]. High Performance Polymers,2017,29(8):984-993. doi: 10.1177/0954008316666386
    [92] KARABELLI D, LEPRETRE J C, ALLOIN F, et al. Poly(vinylidene fluoride)-based macroporous separators for supercapacitors[J]. Electrochimica Acta,2011,57(1):98-103.
    [93] JABBARNIA A, KHAN W S, GHAZINEZAMI A, et al. Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications[J]. Journal of Applied Polymer Science,2016,133(30):43707.
    [94] JAKRIYA S P, SYED A M, PILLAI S K, et al. High-performance poly(vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery[J]. Materials Express,2018,8(1):77-84. doi: 10.1166/mex.2018.1405
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  287
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-04-14
  • 录用日期:  2023-04-28
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回