留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成孔增强型载磷温敏微球对水中U(VI)的去除性能与机制

柯伟 谢水波 王国华

柯伟, 谢水波, 王国华. 成孔增强型载磷温敏微球对水中U(VI)的去除性能与机制[J]. 复合材料学报, 2023, 40(12): 6689-6702. doi: 10.13801/j.cnki.fhclxb.20230425.001
引用本文: 柯伟, 谢水波, 王国华. 成孔增强型载磷温敏微球对水中U(VI)的去除性能与机制[J]. 复合材料学报, 2023, 40(12): 6689-6702. doi: 10.13801/j.cnki.fhclxb.20230425.001
KE Wei, XIE Shuibo, WANG Guohua. Removal performance and mechanism of U(VI) in water by pore forming enhanced phosphorus loaded thermosensitive microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6689-6702. doi: 10.13801/j.cnki.fhclxb.20230425.001
Citation: KE Wei, XIE Shuibo, WANG Guohua. Removal performance and mechanism of U(VI) in water by pore forming enhanced phosphorus loaded thermosensitive microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6689-6702. doi: 10.13801/j.cnki.fhclxb.20230425.001

成孔增强型载磷温敏微球对水中U(VI)的去除性能与机制

doi: 10.13801/j.cnki.fhclxb.20230425.001
基金项目: 国家自然科学基金(11475080);湖南省自然科学基金面上项目(2021JJ30579)
详细信息
    通讯作者:

    谢水波,教授,博士,研究方向为处理理论与技术、环境模拟与污染控制 E-mail:xiesbmr@263.net

  • 中图分类号: TB333

Removal performance and mechanism of U(VI) in water by pore forming enhanced phosphorus loaded thermosensitive microspheres

Funds: National Natural Science Foundation of China (11475080); General program of Hunan Natural Science Foundation (2021JJ30579)
  • 摘要: 为了解决海藻酸钠微球溶胀性差、吸附剂和被吸附物间的传质阻力大和干燥后吸附位点少的问题,采用自由基聚合和离子交联法制备了一种热响应互穿聚合物网络水凝胶微球,并对其进行“造孔+磷酸基团功能化”改性(简称P/PF@TR-IPN)。通过单因素试验研究了铀初始浓度、ZnO的含量、投加量、pH值、温度、干扰离子和吸附时间等对U(VI)吸附的影响,探究了其再生性能。在U(VI)初始浓度为10 mg∙L−1,pH值为4,P/PF@TR-IPN的投加量为0.4 g∙L−1,温度为25℃的条件下,6 h内P/PF@TR-IPN对U(VI)的去除率为94.8%,比造孔微球(PF@TR-IPN)和空白微球(TR-IPN)分别提高了18.5%和30.03%。随着温度从20℃增加到50℃,温敏微球P/PF@TR-IPN的溶胀率从6.98%降至5.14%。P/PF@TR-IPN的BET比表面积比TR-IPN增大了28.5倍。当pH值为4,温度为30℃和20℃时,P/PF@TR-IPN对U(VI)的最大吸附量分别为76.99 mg∙g−1和85.62 mg∙g−1。U(VI)的去除遵循单分子层化学吸附过程,拟二级动力学模型和Langmuir模型可以较好拟合P/PF@TR-IPN对U(VI)的吸附过程。试验表明,3D多孔结构和磷酸基团新活性吸附位点的形成是U(VI)去除效率增加的两个主要因素,P/PF@TR-IPN去除U(VI)的主要机制包括磷酸基团共沉淀的化学吸附作用和海藻酸钠含氧官能团的表面络合作用。

     

  • 图  1  空白微球(TR-IPN)、造孔微球(PF@TR-IPN)、造孔+磷酸基团功能化改性(P/PF@TR-IPN)三种微球的球体 ((a), (d), (g))、外表面 ((b), (e), (h)) 和横截面 ((c), (f), (i)) 的SEM图像

    Figure  1.  SEM images of sphere ((a), (d), (g)), outer surface ((b), (e), (h)) and cross section ((c), (f), (i)) of blank (TR-IPN), pore forming (PF@TR-IPN) and "pore forming+phosphate group functionalization" (P/PF@TR-IPN)

    图  2  P/PF@TR-IPN吸附U(VI)前 (a) 和后 (b) 的EDS图谱

    Figure  2.  P/PF@TR-IPN EDS spectrum before (a) and after (b) adsorption of U(VI)

    图  3  NIPA、SA及P/PF@TR-IPN吸附前后的FTIR图谱

    Figure  3.  FTIR spectra of NIPA, SA and P/PF@TR-IPN before and after adsorption

    图  4  (a) P/PF@TR-IPN吸附U(VI)前后的XPS图谱:(a) 全图谱;(b) U4f;(c) C1s;(d) O1s;(e) P2p

    Figure  4.  XPS spectra of P/PF@TR-IPN before and after adsorption of U(VI): (a) Full spectrum; (b) U4f; (c) C1s; (d) O1s; (e) P2p

    图  5  (a) TR-IPN和P/PF@TR-IPN的N2吸脱附等温线;(b) P/PF@TR-IPN和TR-IPN的孔径分布

    Figure  5.  (a) TR-IPN and P/PF@TR-IPN N2 adsorption desorption isotherm; (b) Pore size distribution of P/PF@TR-IPN and TR-IPN

    STP—Standard temperature and pressure; V—Actual adsorption amount of nitrogen on the surface of the sample; D—Sample hole diameter

    图  6  ZnO的含量对铀吸附性能 (a) 和溶胀性能 (b) 的影响

    Figure  6.  Effect of ZnO content on uranium adsorption (a) and swelling (b)

    图  7  (a) pH对铀吸附的影响;(b) 铀在不同pH下的存在形式;(c) P/PF@TR-IPN的Zeta电位变化图;(d) 不同投加量对吸附U(VI)的影响

    Figure  7.  (a) Effect of pH on uranium adsorption; (b) Existing form of uranium at different pH; (c) Zeta potential change diagram of P/PF@TR-IPN; (d) Effect of different dosage on adsorption of U(VI)

    pHpzc—Point of zero charge

    图  8  温度对P/PF@TR-IPN吸附性能 (a) 和溶胀性 (b) 的影响

    Figure  8.  Effect of temperature on adsorption (a) and swelling properties (b) of P/PF@TR-IPN

    图  9  干扰离子 (a) 和离子强度 (b) 对P/PF@TR-IPN除铀性能的影响

    Figure  9.  Effect of interference ion (a) and ionic concentration (b) on uranium removal performance of P/PF@TR-IPN

    图  10  (a) 吸附时间对P/PF@TR-IPN吸附不同浓度U(VI)的影响;(b) 拟一级动力学模型拟合曲线;(c) 拟二级动力学模型拟合曲线;(d) 颗粒内扩散模型拟合曲线

    Figure  10.  (a) Effect of adsorption time on the adsorption of different concentrations of U(VI) by P/PF@TR-IPN; (b) Fitting curves of pseudo-first-order kinetic model; (c) Fitting curves of quasi-second-order kinetic model; (d) Fitting curves of intra-particle diffusion model

    qt—Adsorption capacity at t time; qe—Equilibrium adsorption capacity; t—Adsorption time

    图  11  (a) P/PF@TR-IPN吸附铀的非线性等温模型拟合;(b) lnK0与1/T的关系图

    Figure  11.  (a) Nonlinear isothermal model fitting diagram of uranium adsorption by P/PF@TR-IPN; (b) Relationship between lnK0and 1/T

    qe—Equilibrium adsorption capacity; Ce—Uranium concentration at adsorption equilibrium; K0—Langmuir coefficient related to the affinity of binding site; T—Temperature

    图  12  不同循环次数的P/PF@TR-IPN吸附-解吸效率

    Figure  12.  Adsorption-desorption efficiency with different cycles of P/PF@TR-IPN

    表  1  TR-IPN和P/PF@TR-IPN的孔隙特征参数

    Table  1.   Pore characteristic parameters of TR-IPN and P/PF@TR-IPN

    SampleBET surface area/(m2·g−1)Average pore diameter/nmPore volume/(cm3·g−1)
    TR-IPN0.0747.9220.016
    P/PF@TR-IPN2.1096.1870.054
    下载: 导出CSV

    表  3  P/PF@TR-IPN吸附等温线模型的相关参数

    Table  3.   Relevant parameters of P/PF@TR-IPN adsorption isotherm model

    T/KLangmuir modelFreundlich model
    qmax/(mg∙g−1)KL/(L∙mg−1)R2KF/(L∙mg−1)nR2
    29385.622.2500.95044.824.5400.863
    30376.991.3670.93737.284.0360.914
    31372.661.0860.98633.823.8200.926
    Notes: qmax—Adsorption capacity per unit mass of the adsorbent; KL—Langmuir coefficient related to the affinity of binding site;
    KF, n—Constants that are related to the adsorption capacity and the adsorption intensity, respectively.
    下载: 导出CSV

    表  2  P/PF@TR-IPN吸附铀的动力学模型参数

    Table  2.   Kinetic model parameters of uranium adsorption by P/PF@TR-IPN

    C0/
    (mg∙L−1)
    qe,exp/
    (mg∙g−1)
    Pseudo-first-order model Pseudo-second-order model Intraparticle diffusion model
    K1/
    min−1
    qe,cal/
    (mg∙g−1)
    R2 K2/
    min−1
    qe,cal/
    (mg∙g−1)
    R2 Kd1f/
    (mg∙(g∙
    min0.5)−1)
    C1 R12 Kd2f/
    (mg∙(g∙
    min0.5)−1)
    C2 R22 Kd3f/
    (mg∙(g∙
    min0.5)−1)
    C3 R32
    5 12.30 0.019 8.758 0.976 0.0049 12.658 1 1.457 −0.286 0.983 0.610 4.923 0.995 0.011 12.028 0.511
    10 24.62 0.015 16.087 0.997 0.0024 25.329 1 2.869 −1.397 0.988 1.547 5.424 0.996 0.031 23.876 0.585
    15 36.85 0.012 16.124 0.979 0.0021 37.538 0.999 4.707 −2.464 0.962 1.857 12.854 0.948 0.077 34.912 0.494
    下载: 导出CSV

    表  4  不同吸附剂对U(VI)吸附效果的比较

    Table  4.   Comparison of adsorption effects of different adsorbents on U(VI)

    Adsorbentsqmax/(mg∙g−1)T/KpHRef.
    Magnetic biochar 52.63 318 4 [37]
    Fe3O4@SiO2 52.00 298 6 [38]
    MSD 31.54 293 5 [39]
    MY@SiO2-PEI 173.99 303 6 [35]
    Sulfonated GO 45.05 293 2 [40]
    HAP-AC-Alginate 18.66 298 6 [41]
    P/PF@TR-IPN 85.62 293 4 This work
    Notes: MSD—Magnesium silicate/diatomite; MY@SiO2-PEI—Polyethyleneimine modified magnetic yeast composites; Sulfonated GO—Sulfonated graphene oxide; HAP-AC-Alginate—Nano-hydroxyapatite coated activated carbon impregnated alginate; P/PF@TR-IPN—Pore forming enhanced phosphorus loaded thermal-responsive interpenetrating polymer network hydrogel microspheres.
    下载: 导出CSV

    表  5  P/PF@TR-IPN吸附铀的热力学参数

    Table  5.   Thermodynamic parameters of uranium adsorption by P/PF@TR-IPN

    T/KlnK0ΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(J·(mol·K)−1)
    2936.17−14.99−40.86−88.29
    3035.56−14.11
    3135.10−13.23
    Notes: ΔG0—Standard free energy change; ΔH0—Standard enthalpy change; ΔS0—Standard entropy change.
    下载: 导出CSV
  • [1] YANG S, XU M Y, YIN J, et al. Thermal-responsive Ion-imprinted magnetic microspheres for selective separation and controllable release of uranium from highly saline radioactive effluents[J]. Separation and Purification Technology,2020,246:116917. doi: 10.1016/j.seppur.2020.116917
    [2] SONG S, ZHANG S, HUANG S, et al. A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III)[J]. Chemical Engineering Journal,2019,355:697-709. doi: 10.1016/j.cej.2018.08.205
    [3] ZHANG T, LING B K, HU Y Q, et al. An anionic manganese(II) metal-organic framework for uranyl adsorption[J]. CrystEngComm,2019,21(26):3901-3905. doi: 10.1039/C9CE00603F
    [4] BUDNYAK T M, GŁADYSZ-PŁASKA A, STRIZHAK A V, et al. Imidazole-2yl-phosphonic acid derivative grafted onto mesoporous silica surface as a novel highly effective sorbent for uranium(VI) ion extraction[J]. ACS Applied Materials & Interfaces,2018,10(7):6681-6693. doi: 10.1021/acsami.7b17594
    [5] OU M R, LI W Y, ZHANG Z H, et al. β-cyclodextrin and diatomite immobilized in sodium alginate biosorbent for selective uranium(VI) adsorption in aqueous solution[J]. International Journal of Biological Macromolecules, 2022, 222: 2006-2016.
    [6] MANOHARA H M, NAYAK S S, FRANKLIN G, et al. Progress in marine derived renewable functional materials and biochar for sustainable water purification[J]. Green Chemistry,2021,23(21):8305-8331. doi: 10.1039/D1GC03054J
    [7] ZHANG W, DENG Q, HE Q L, et al. A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability and stability towards Cu(II) removal[J]. Chemical Engineering Journal,2018,351:462-472. doi: 10.1016/j.cej.2018.06.129
    [8] DE MOURA M R, GUILHERME M R, CAMPESE G M, et al. Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology[J]. European Polymer Journal,2005,41(12):2845-2852. doi: 10.1016/j.eurpolymj.2005.06.007
    [9] WU D B, GAO Y W, LI W J, et al. Selective adsorption of La3+ using a tough alginate-clay-poly(n-isopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles[J]. ACS Sustainable Chemistry & Engineering,2016,4(12):6732-6743.
    [10] YANG Z, HUANG X Y, MA X H, et al. Fabrication of a novel and green thin-film composite membrane containing nano-voids for water purification[J]. Journal of Membrane Science,2019,570-571:314-321. doi: 10.1016/j.memsci.2018.10.057
    [11] LUO H Y, ZENG X Y, LIAO P, et al. Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr4+ and PNIPAM-interpenetrated networks[J]. International Journal of Biological Macromolecules,2019,126:1133-1144. doi: 10.1016/j.ijbiomac.2018.12.269
    [12] FOSTER R I, KIM K W, OH M K, et al. Effective removal of uranium via phosphate addition for the treatment of uranium laden process effluents[J]. Water Research,2019,158:82-93. doi: 10.1016/j.watres.2019.04.021
    [13] SHANG D L, GEISSLER B, MEW M, et al. Unconventional uranium in China's phosphate rock: Review and outlook[J]. Renewable and Sustainable Energy Reviews,2021,140:110740. doi: 10.1016/j.rser.2021.110740
    [14] 游建南. 2-(5-溴-2吡啶偶氮)-5-二乙氨基苯酚直接分光光度法测定有机相中微量铀(VI)[J]. 原子能科学技术, 1981, 15(4):447-451.

    YOU Jiannan. Direct spectrophotometric determination of trace uranium (VI) in organic phase with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol[J]. Atomic Energy Science and Technology,1981,15(4):447-451(in Chinese).
    [15] LI X L, QI Y X, LI Y F, et al. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems[J]. Bioresource Technology,2013,142:611-619. doi: 10.1016/j.biortech.2013.05.081
    [16] HUANG R Y M, PAL R, MOON G Y. Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane [J]. Journal of Membrane Science, 2000, 167(2): 275-289.
    [17] BODDU V M, NAISMITH N K, PATEL H R. Environmentally responsive poly(N-isopropylacrylamide)-co-poly(acrylic acid) hydrogels for separation of toxic metals and organic explosive compounds from water[J]. Journal of Polymers and the Environment,2019,27(3):571-580. doi: 10.1007/s10924-018-1352-y
    [18] GOLA A, SACHARCZUK M, MUSIAŁW, et al. Synthesis of AMPSA polymeric derivatives monitored by electrical conductivity and evaluation of thermosensitive properties of resulting microspheres[J]. Molecules,2019,24(6):1164. doi: 10.3390/molecules24061164
    [19] ZHANG H J, ZHANG Y N, HE L F, et al. Thermal-responsive poly(N-isopropyl acrylamide)/sodium alginate hydrogels: Preparation, swelling behaviors, and mechanical properties[J]. Colloid and Polymer Science,2016,294(12):1959-1967. doi: 10.1007/s00396-016-3951-2
    [20] LIU X, ZHANG L F. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies[J]. Powder Technology,2015,277:112-119. doi: 10.1016/j.powtec.2015.02.055
    [21] LIU Q, HU P, WANG J, et al. Phosphate adsorption from aqueous solutions by zirconium(IV) loaded cross-linked chitosan particles[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,59:311-319. doi: 10.1016/j.jtice.2015.08.012
    [22] YI X F, SUN F L, HAN Z H, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(II) and U(VI) removal[J]. Ecotoxicology and Environmental Safety,2018,158:309-318. doi: 10.1016/j.ecoenv.2018.04.039
    [23] LIU H J, ZHOU Y C, YANG Y B, et al. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution[J]. Applied Surface Science,2019,471:88-95. doi: 10.1016/j.apsusc.2018.11.231
    [24] NAN Y, WANG J L, CHANG X, et al. Functionalized graphene oxide/sodium alginate beads with ion responsiveness for uranium trapping[J]. Carbohydrate Polymers,2023,300:120259. doi: 10.1016/j.carbpol.2022.120259
    [25] ZHOU Y B, XIAO J, HU R, et al. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium[J]. Journal of Molecular Liquids,2020,303:112659. doi: 10.1016/j.molliq.2020.112659
    [26] WAN J, ZHU C, HU J, et al. Zirconium-loaded magnetic interpenetrating network chitosan/poly(vinyl alcohol) hydrogels for phosphorus recovery from the aquatic environment[J]. Applied Surface Science,2017,423:484-491. doi: 10.1016/j.apsusc.2017.06.201
    [27] PAN N, JIN Y D, WANG X Q, et al. A self-assembled supramolecular material containing phosphoric acid for ultrafast and efficient capture of uranium from acidic solutions[J]. ACS Sustainable Chemistry & Engineering,2018,7(1):950-960.
    [28] JUNG K W, LEE S Y, CHOI J W, et al. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media[J]. Chemical Engineering Journal,2019,369:529-541. doi: 10.1016/j.cej.2019.03.102
    [29] KONG L J, RUAN Y, ZHENG Q Y, et al. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater[J]. Journal of Hazardous Materials,2020,382:120784. doi: 10.1016/j.jhazmat.2019.120784
    [30] ALHINDAWY I G, ELSHEHY E A, EL-KHOULY M E, et al. Fabrication of mesoporous NaZrP cation-exchanger for U(VI) ions separation from uranyl leach liquors[J]. Colloids and Interfaces,2019,3(4):61. doi: 10.3390/colloids3040061
    [31] LI L, MA R, WEN T, et al. Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment[J]. Science of the Total Environment,2019,694:133697. doi: 10.1016/j.scitotenv.2019.133697
    [32] WU L P, LIN X Y, ZHOU X B, et al. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum[J]. Applied Surface Science,2016,384:466-479. doi: 10.1016/j.apsusc.2016.05.056
    [33] HAN B, ZHANG E Y, CHENG G, et al. Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal[J]. Chemical Engineering Journal,2018,338:734-744. doi: 10.1016/j.cej.2018.01.089
    [34] LI X, PAN H, YU M, et al. Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch[J]. Journal of Molecular Liquids,2018,269:64-71. doi: 10.1016/j.molliq.2018.08.039
    [35] 伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9):3065-3075.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)[J]. Acta Materiae Compositae Sinica,2021,38(9):3065-3075(in Chinese).
    [36] CHEN X, XIE S B, WANG G H, et al. The performance and mechanism of U(VI) removal from aqueous solutions by a metal-organic framework (DUT-69)[J]. Journal of Radioanalytical and Nuclear Chemistry,2021,328(1):181-194. doi: 10.1007/s10967-021-07645-8
    [37] LI M X, LIU H B, CHEN T H, et al. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption [J]. Science of the Total Environment, 2019, 651: 1020-1028.
    [38] FAN F L, QIN Z, BAI J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J]. Journal of Environmental Radioactivity,2012,106:40-46. doi: 10.1016/j.jenvrad.2011.11.003
    [39] LU S H, HU J S, CHEN C L, et al. Spectroscopic and modeling investigation of efficient removal of U(VI) on a novel magnesium silicate/diatomite[J]. Separation and Purification Technology,2017,174:425-431. doi: 10.1016/j.seppur.2016.09.052
    [40] SUN Y B, WANG X X, AI Y J, et al. Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations[J]. Chemical Engineering Journal,2017,310:292-299. doi: 10.1016/j.cej.2016.10.122
    [41] SAHA S, BASU H, ROUT S, et al. Nano-hydroxyapatite coated activated carbon impregnated alginate: A new hybrid sorbent for uranium removal from potable water[J]. Journal of Environmental Chemical Engineering,2020,8(4):103999. doi: 10.1016/j.jece.2020.103999
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  195
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-04-13
  • 录用日期:  2023-04-15
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回