留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰用复合材料S2/430LV热环境下拉伸性能及预报

陈国涛 梅志远 白雪飞

陈国涛, 梅志远, 白雪飞. 舰用复合材料S2/430LV热环境下拉伸性能及预报[J]. 复合材料学报, 2024, 41(1): 495-506. doi: 10.13801/j.cnki.fhclxb.20230411.001
引用本文: 陈国涛, 梅志远, 白雪飞. 舰用复合材料S2/430LV热环境下拉伸性能及预报[J]. 复合材料学报, 2024, 41(1): 495-506. doi: 10.13801/j.cnki.fhclxb.20230411.001
CHEN Guotao, MEI Zhiyuan, BAI Xuefei. Tensile properties and prediction of shipborne composites S2/430LV in thermal environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 495-506. doi: 10.13801/j.cnki.fhclxb.20230411.001
Citation: CHEN Guotao, MEI Zhiyuan, BAI Xuefei. Tensile properties and prediction of shipborne composites S2/430LV in thermal environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 495-506. doi: 10.13801/j.cnki.fhclxb.20230411.001

舰用复合材料S2/430LV热环境下拉伸性能及预报

doi: 10.13801/j.cnki.fhclxb.20230411.001
基金项目: 国家自然科学基金(51479205;51609252);海军工程大学舰船与海洋学院强基计划
详细信息
    通讯作者:

    梅志远,博士,教授,博士生导师,研究方向为舰船功能复合材料结构工程、舰船结构抗爆与防护工程 E-mail:zhiyuan_mei@163.com

  • 中图分类号: TB332

Tensile properties and prediction of shipborne composites S2/430LV in thermal environment

Funds: National Natural Science Foundation of China (51479205; 51609252); Strong Base Program, Naval University of Engineering , College of Naval and Ocean Engineering
  • 摘要: 从宏观、微观角度分别对S2/430LV在热-力联合作用下拉伸损伤失效模式和高温热损伤形貌进行研究,并应用DMA和TG等技术手段对材料进行热性能分析,重点揭示了S2/430LV拉伸试样在20~180℃拉伸损伤失效机制及拉伸强度/模量随温度变化规律,并进行预报。研究表明:随着环境温度的增加,430LV树脂软化程度和流动性增加,树脂与纤维丝束粘接能力降低;在热-力联合作用下,拉伸强度和模量随着温度升高而降低,并且均在100℃附近降低最快;试样失效模式随着温度增加也发生变化,在100℃之前,失效模式表现为纤维完全断裂破坏,应力-应变曲线呈显著线弹性特征,但在100℃以后,失效模式变为层间分层失效,失效模式的变化也对材料拉伸承载方式产生一定影响,导致拉伸模量保留率高于强度保留率,应力-应变曲线也出现凹曲线特征;根据Gibson预报模型和Bisby预报模型,利用Origin软件快速、准确获取预报模型未知参数最优值,发现两种模型拟合结果与试验结果高度吻合。

     

  • 图  1  S2/430LV试样尺寸及状态

    Figure  1.  Sample geometry and status of S2/430LV

    R—Radius

    图  2  试验设备及状态

    Figure  2.  Test equipment and status

    图  3  参照样件及炉温温升曲线

    Figure  3.  Reference to sample and furnace temperature rise cure sample and heat source

    图  4  430LV树脂热重试验曲线

    Figure  4.  430LV thermogravimetric curves

    Ti—Initial thermal decomposition temperature

    图  5  430LV树脂和S2/430LV的DMA试验结果

    Figure  5.  DMA test results of 430LV and S2/430LV

    图  6  S2/430LV在不同温度下材料损伤形貌

    Figure  6.  Material damage morphology of S2/430LV at different temperatures

    图  7  S2/430LV试样在不同温度下沿厚度方向损伤形貌

    Figure  7.  Damage profile along thickness direction of the specimen at different temperatures of S2/430LV

    图  8  S2/430LV拉伸强度随温度变化规律

    Figure  8.  Variation of tensile strength with temperature of S2/430LV

    图  9  S2/430LV拉伸模量随温度变化规律

    Figure  9.  Variation of tensile modulus with temperature of S2/430LV

    图  10  S2/430LV拉伸强度和模量随温度变化对比

    Figure  10.  Comparison of tensile strength and modulus with temperature of S2/430LV

    图  11  S2/430 LV在不同温度下应力-应变曲线变化趋势

    Figure  11.  Trend of stress-strain curve at different temperatures of S2/430 LV

    图  12  Gibson拟合结果与试验结果对比

    Figure  12.  Fitting results of Gibson compared with experimental results

    图  13  Gibson模型对试验数据最优拟合结果

    Figure  13.  Gibson model best-fit results for experimental data

    a'PU; b'PR; c'k; d'T'; R2(COD)—Correlation coefficient

    图  14  Bisby模量拟合结果与试验结果对比

    Figure  14.  Bisby model best-fit results for experimental data

    图  15  Gibson和Bisby最优拟合结果对比分析

    Figure  15.  Comparison analysis of the best-fit results of Gibson and Bisby model

    表  1  S2/430LV拉伸强度汇总

    Table  1.   Tensile strength summary of S2/430LV

    Temperature/℃T-1
    /MPa
    T-2
    /MPa
    T-3
    /MPa
    Average
    /MPa
    Dispersion factor/%Retention rate/%
    20 529.82 524.01 522.24 525.36 0.75 100.00
    40 509.81 502.33 498.85 503.66 1.1 95.87
    60 426.84 443.85 448.38 439.69 2.5 83.69
    80 405.44 408.61 406.89 406.98 3.9 77.47
    100 363.57 366.99 364.45 365.00 4.9 69.48
    120 246.31 300.32 251.66 266.10 11.8 50.65
    150 126.35 134.26 116.13 125.58 7.24 23.90
    180 83.84 89.23 85.65 86.24 3.2 16.42
    Notes: T-1, T-2 and T-3 represent specimen numbers.
    下载: 导出CSV

    表  2  S2/430LV拉伸模量汇总

    Table  2.   Tensile modulus summary of S2/430LV

    Temperature/℃T-1
    /GPa
    T-2
    /GPa
    T-3
    /GPa
    Average/GPaDiscrete coefficient/%Retention rate/%
    20 23.22 23.46 24.41 23.70 2.66 100.00
    40 23.57 22.97 23.53 23.36 1.44 98.57
    60 19.62 19.59 20.38 19.86 2.25 83.80
    80 19.70 18.62 17.45 18.59 6.05 78.44
    100 16.88 16.82 17.46 17.05 2.07 71.94
    120 11.65 13.37 12.88 12.63 7.02 53.29
    150 11.37 11.24 10.92 11.18 2.07 47.17
    180 10.29 10.16 10.92 10.46 3.89 44.14
    下载: 导出CSV

    表  3  Gibson模型强度和模量预报参数

    Table  3.   Gibson model strength and modulus prediction parameters

    ClassificationPUPRkT'/℃
    Strength/MPa525.3686.240.02475
    Modulus/GPa 23.7010.46
    Notes: PU—Mechanical properties of materials in a glassy state; PR—Mechanical properties of materials in rubber gel state; k—Temperature conversion zone width constant; T'—Glass transition temperature.
    下载: 导出CSV

    表  4  Bisby模型强度和模量预报参数

    Table  4.   Bisby model strength and modulus prediction parameters

    ClassificationPUabc/℃
    Strength/MPa525.360.150.02100
    Modulus/GPa 23.700.45
    Notes: a—Retention rate of remaining mechanical properties of materials; b—A constant for the degree of degradation of material mechanical properties; c—Test curve center temperature
    下载: 导出CSV
  • [1] 梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2):1-8. doi: 10.19693/j.issn.1673-3185.02098

    MEI Zhiyuan. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research,2021,16(2):1-8(in Chinese). doi: 10.19693/j.issn.1673-3185.02098
    [2] MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composites Structures, 2001, 53(1): 21-42.
    [3] ZIAN J, LI T T, FU P C, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2018,154:53-63. doi: 10.1016/j.compscitech.2017.11.015
    [4] BHAT T, KANDARE E, GIBSON A G, et al. Compressive softening and failure of basalt fibre composites in fire: Modeling and experimentation[J]. Composites Structures,2017,165:15-24. doi: 10.1016/j.compstruct.2017.01.003
    [5] USMAN S, JHON N, MICHAELL B. Fire safety of compo-sites in the US navy[J]. Composites Part A: Applied Science and Manufacturing,1999,30:707-713. doi: 10.1016/S1359-835X(98)00112-2
    [6] 陈国涛, 邓波, 梅志远. S2/430LV复合材料拉-剪疲劳材料许用值试验[J]. 中国舰船研究, 2015, 11(3):55-60.

    CHEN Guotao, DENG Bo, MEI Zhiyuan. The research about allowable value on tension-shear fatigue of S2/430LV composite materials[J]. Chinese Journal of Ship Research,2015,11(3):55-60(in Chinese).
    [7] 陈国涛, 梅志远, 李华东. SW220/430LV复合材料拉-拉疲劳强度材料许用值试验研究[J]. 玻璃钢/复合材料, 2015(9):11-16. doi: 10.3969/j.issn.1003-0999.2015.09.002

    CHEN Guotao, MEI Zhiyuan, LI Huadong. The experimental research for design allowable of tension strength of SW220/430LV composite material[J]. Fiber Reinforced Plastics/Composites,2015(9):11-16(in Chinese). doi: 10.3969/j.issn.1003-0999.2015.09.002
    [8] 杨国威, 梅志远, 李华东, 等. 典型舰用复合材料DMA动态力学性能试验研究[J]. 玻璃钢/复合材料, 2018(6):66-72. doi: 10.3969/j.issn.1003-0999.2018.06.012

    YANG Guowei, MEI Zhiyuan, LI Huadong, et al. Experimental study on dynamic mechanical properties of typical naval ship composites materials[J]. Fiber Reinforced Plastics/Composites,2018(6):66-72(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.06.012
    [9] BAGHAD A, EL MABROUK K, VAUDREUIL S, et al. Effects of high operating temperatures and holding times on thermomechanical and mechanical properties of autoclaved epoxy/carbon composite laminates[J]. Polymer Composites,2022,43(2):862-873. doi: 10.1002/pc.26416
    [10] 谭伟, 那景新, 任俊铭, 等. 高温环境下碳纤维增强树脂复合材料的层间力学性能老化行为与失效预测[J]. 复合材料学报, 2020, 37(4):859-868. doi: 10.13801/j.cnki.fhclxb.20190619.002

    TAN Wei, NA Jingxin, REN Junming, et al. Aging behavior and failure prediction of interlaminar mechanical properties of carbon fiber reinforced polymer composite at high temperature[J]. Acta Materiae Compositae Sinica,2020,37(4):859-868(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190619.002
    [11] ZAVATTA N, RONDINA F, FALASCHATTI M. Effect of thermal aging on the mechanical strength of carbon fibre reinforced epoxy composites[J]. Polymers,2021,13(12):2006. doi: 10.3390/polym13122006
    [12] 高艺航, 石玉红, 王鲲鹏, 等. 碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420高温力学性能(I)−拉伸和层间剪切性能[J]. 复合材料学报, 2016, 33(6):1206-1213.

    GAO Yihang, SHI Yuhong, WANG Kunpeng, et al. High-temperature mechanical properties (I) of carbon fiber reinforced polyimide resin matrix composites MT300/KH420—Tensile and interlaminar shear properties[J]. Acta Materiae Compositae Sinica,2016,33(6):1206-1213(in Chinese).
    [13] MAHIEUX C A, REIFSNIDER K L, CASE S W. Property modeling across transition temperatures in PMC's: Part I. Tensile properties[J]. Applied Composite Materials,2001,8(4):217-234. doi: 10.1023/A:1011282704357
    [14] BISBY L A. Fire behavior of fibre-reinforced polymer (FRP) reinforced or confined concrete[D]. Kingston: Queen's University, 2003.
    [15] GIBSON A G, WU Y S, EVANS J T, et al. Laminate theory analysis of composites under load in fire[J]. Journal of Composite Materials,2006,40(7):639-658. doi: 10.1177/0021998305055543
    [16] WANG K, YOUNG B, SMITH S T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures[J]. Engineering Structures,2011,33(7):2154-2161. doi: 10.1016/j.engstruct.2011.03.006
    [17] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastics composites determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [18] 中国国家标准化管理委员会. 纤维增强塑料高低温力学性能试验方法: GB/T 9979—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Guide rule of test for mechanical properties of fber-reinforced plastics at elevated and reduced temperatures: GB/T 9979—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [19] 中国国家标准化管理委员会. 石英纤维织物增强树脂基复合材料高温力学性能试验方法: GB/T 38515—2020[S]. 北京: 中国标准出版社, 2020.

    Standardization Administration of the People's Republic of China. The method for high temperature mechanical pro-perties of quartz fabric-reinforced resin matrix composite materials: GB/T 38515—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [20] 王玥. CF/PPS 复合材料高温压缩性能和冲击损伤模式分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    WANG Yue. Analysis on the compression property and implicit damage modes of CF/PPS composite at high temperatures[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [21] ALBOUY W, VIEILLE B, TALEB L. Influence of matrix ductility on the high-temperature fatigue behavior of quasi-isotropic woven-ply thermoplastic and thermoset lami-nates[J]. Composites Part A: Applied Science and Manufacturing,2014,67:22-36. doi: 10.1016/j.compositesa.2014.07.012
    [22] 张玲峰. 复合材料-木夹芯梁的传热机理和火灾后力学性能研究[D]. 南京: 东南大学, 2020.

    ZHANG Lingfeng. Heat transfer mechanism and post-fire mechanical performance of wood-cored composite sandwich[D]. Nanjing: Southeast University, 2020(in Chinese).
    [23] 董舟俊, 梅志远, 陈国涛. FRP高温力学性能研究进展[J]. 高分子通报, 2022(11):58-65.

    DONG Zhoujun, MEI Zhiyuan, CHEN Guotao. Research mechanical properties of fibre reinforced polymer at elevated temperatures[J]. Polymer Bulletin,2022(11):58-65(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  276
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-03-30
  • 录用日期:  2023-04-05
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回