留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/SiC复合材料连接结构拉脱失效机制

李志强 吴振强 杨凌霄 李尧 刘宝瑞

李志强, 吴振强, 杨凌霄, 等. C/SiC复合材料连接结构拉脱失效机制[J]. 复合材料学报, 2023, 40(12): 6852-6858. doi: 10.13801/j.cnki.fhclxb.20230407.002
引用本文: 李志强, 吴振强, 杨凌霄, 等. C/SiC复合材料连接结构拉脱失效机制[J]. 复合材料学报, 2023, 40(12): 6852-6858. doi: 10.13801/j.cnki.fhclxb.20230407.002
LI Zhiqiang, WU Zhenqiang, YANG Lingxiao, et al. Pull-out failure mechanism of C/SiC composite connection structure[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6852-6858. doi: 10.13801/j.cnki.fhclxb.20230407.002
Citation: LI Zhiqiang, WU Zhenqiang, YANG Lingxiao, et al. Pull-out failure mechanism of C/SiC composite connection structure[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6852-6858. doi: 10.13801/j.cnki.fhclxb.20230407.002

C/SiC复合材料连接结构拉脱失效机制

doi: 10.13801/j.cnki.fhclxb.20230407.002
基金项目: 国家自然科学基金(U20B2002;52202082;12002056)
详细信息
    通讯作者:

    吴振强,博士,研究员,研究方向为结构强度与失效分析 E-mail: wuzhenqiang@126.com

  • 中图分类号: TB332

Pull-out failure mechanism of C/SiC composite connection structure

Funds: National Natural Science Foundation of China (U20B2002; 52202082; 12002056)
  • 摘要: 通过C/SiC陶瓷基复合材料连接结构单轴拉伸试验,研究了连接结构拉脱失效过程的力学性能变化规律,结合应变测量、高速摄像、CT检测等测试手段从宏观角度和细观角度探究了连接结构拉脱失效过程中的损伤演化过程,确定了陶瓷基复合材料连接结构拉脱失效机制。结果表明:由于螺纹部位沉积及接触状态的差异,导致不同连接结构的初始刚度不一致;随着位移不断增加,连接部位的刚度趋于一致。加载过程中螺纹孔附近受到挤压产生损伤并发生分层现象;当螺纹孔局部的损伤达到一定程度时,连接结构达到最大承载能力,此时随着位移继续增加螺钉开始拉脱,承载能力开始下降,直至螺钉完全拉脱拔出。

     

  • 图  1  H型连接结构试件示意图

    Figure  1.  Diagram of H-shape connection structure

    Φ—Diameter; A—Section view in mechanical drawing

    图  2  试件安装状态

    Figure  2.  Test piece installation status

    图  3  C/SiC连接结构试件的载荷-位移曲线

    Figure  3.  Load-displacement curves of C/SiC connection structure test piece

    Fmax—Maximum tensile load of the specimen; T1, T2, T3—Specimen number

    图  4  C/SiC连接结构试件T1的载荷-位移曲线及连接界面变化

    Figure  4.  Load-displacement curve and change of connection interface of C/SiC connection structure test piece T1

    图  5  C/SiC连接结构试件试验后状态

    Figure  5.  State of the C/SiC connection structure specimen after test

    图  6  试验前C/SiC连接结构CT检测结果

    Figure  6.  CT results of C/SiC connection structure before test

    图  7  试验后C/SiC连接结构CT检测结果

    Figure  7.  CT results of C/SiC connection structure after test

    图  8  应变花安装位置

    Figure  8.  Installation position of strain gage

    图  9  C/SiC连接结构连接部位应变变化规律

    Figure  9.  Strain change rule of connection part of C/SiC connection structure

  • [1] 张立同. 纤维增韧碳化硅陶瓷复合材料—模拟、表征与设计[M]. 北京: 化学工业出版社, 2009.

    ZHANG Litong. Toughening silicon carbide ceramic fiber composite materials—Simulation, characterization and design[M]. Beijing: Chemical Industry Press, 2009(in Chinese).
    [2] 张毅. CVI-2D C/SiC复合材料铆接单元的力学行为与失效机制[D]. 西安: 西北工业大学, 2017.

    ZHANG Yi. Numerical stimulation and experimental validation of stress in C/SiC riveted joints under shear load[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese).
    [3] LI G D, LI Y, YU G Q, et al. Effects of fiber preform structures on the mechanical properties of C/SiC nuts and bolts[J]. Ceramics International, 2016, 42(11): 12901-12906.
    [4] LI X Q, TAN Z Y, ZHANG Y, et al. Shear behaviors and failure mechanisms of 2D C/SiC pins prepared by chemical vapor infiltration[J]. Ceramics International,2020,46(10):16693-16699. doi: 10.1016/j.ceramint.2020.03.243
    [5] FU M Q, FANG G D, LIU S, et al. Failure analysis of 2D C/SiC composite Z-pinned/bonded hybrid single-lap joints[J]. Ceramics International,2020,46(13):21216-21224. doi: 10.1016/j.ceramint.2020.05.204
    [6] 张青, 刘永胜, 门静, 等. 受剪载荷下C/SiC铆接接头应力数值模拟与实验验证[J]. 稀有金属材料与工程, 2014, 43(2):327-330.

    ZHANG Qing, LIU Yongsheng, MEN Jing, et al. Numerical stimulation and experimental validation of stress in C/SiC riveted joints under shear load[J]. Rare Metal Materials and Engineering,2014,43(2):327-330(in Chinese).
    [7] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料紧固件拉-拉疲劳行为研究[J]. 宇航材料工艺, 2020, 50(3):81-86. doi: 10.12044/j.issn.1007-2330.2020.03.014

    YUAN Jianyu, PANG Jincheng, WANG Ying, et al. Tension-tension fatigue behavior of C/SiC composite fasteners[J]. Aerospace Materials & Technology,2020,50(3):81-86(in Chinese). doi: 10.12044/j.issn.1007-2330.2020.03.014
    [8] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料螺钉拉伸强度分布模型[J]. 宇航材料工艺, 2019, 49(5):74-78. doi: 10.12044/j.issn.1007-2330.2019.05.015

    YUAN Jianyu, PANG Jincheng, WANG Ying, et al. Tensile strength distribution model of C/SiC composite material bolts[J]. Aerospace Materials & Technology,2019,49(5):74-78(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.05.015
    [9] 刘永胜, 胡成浩, 汪清, 等. 受拉载荷下C/SiC铆接接头应力的数值模拟与实验验证[J]. 复合材料学报, 2013, 30(3):205-210.

    LIU Yongsheng, HU Chenghao, WANG Qing, et al. Numerical stimulation and experimental validation of stress in C/SiC riveting joints under tensile load[J]. Acta Materiae Compositae Sinica,2013,30(3):205-210(in Chinese).
    [10] 卢子兴, 廖强, 杨振宇, 等. C/SiC复合材料螺栓螺牙承载能力[J]. 复合材料学报, 2015, 32(1):182-187.

    LU Zixing, LIAO Qiang, YANG Zhenyu, et al. Load bearing capability of thread teeth of C/SiC composite bolts[J]. Acta Materiae Compositae Sinica,2015,32(1):182-187(in Chinese).
    [11] LI G D, ZHANG C R, HU H F, et al. Preparation and mechanical properties of C/SiC nuts and bolts[J]. Materials Science and Engineering: A,2012,547:1-5.
    [12] 朱宝城, 高希光, 宋迎东. 陶瓷基复合材料螺栓渐进损伤计算与强度预测[J]. 推进技术, 2020, 41(2):406-411.

    ZHU Baocheng, GAO Xiguang, SONG Yingdong. Progressive damage calculation and strength prediction of ceramic matrix composites bolt[J]. Journal of Propulsion Technology,2020,41(2):406-411(in Chinese).
    [13] 李正禹. 螺钉参数对C/SiC复合材料连接结构高温拉伸性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LI Zhengyu. Effects of fastener parameters on tensile properties of C/SiC composite joint structures at high temperatures[D]. Haerbin: Harbin Institute of Technology, 2019(in Chinese).
    [14] 高魁垠, 李海波, 吴建国, 等. 2D-C/SiC复合材料螺栓连接结构可靠性分析[J]. 强度与环境, 2020, 47(1):33-40.

    GAO Kuiyin, LI Haibo, WU Jianguo, et al. Reliability analysis of 2D-C/SiC composite bolted joints[J]. Structure & Environment Engineering,2020,47(1):33-40(in Chinese).
    [15] 刘宝瑞, 侯传涛, 赵丽滨, 等. 陶瓷基复合材料连接结构失效分析方法[J]. 装备环境工程, 2020, 17(1):63-70.

    LIU Baorui, HOU Chuantao, ZHAO Libin, et al. Failure analysis method of ceramic matrix composite joint structures[J]. Equipment Environmental Engineering,2020,17(1):63-70(in Chinese).
    [16] ZHAO L B, YANG W, CAO T C, et al. A progressive failure analysis of all-C/SiC composite multi-bolt joints[J]. Composite Structures,2018,202:1059-1068. doi: 10.1016/j.compstruct.2018.05.029
    [17] HE Z B, ZHANG L T, ZHANG Y, et al. Microstructural characterization and failure analysis of 2D C/SiC two-layer beam with pin-bonded hybrid joints[J]. International Journal of Adhesion & Adhesives,2015,57:70-78.
    [18] 李旭勤, 陈旭, 陈婧旖, 等. 平纹编织C/SiC单钉铆接单元的制备与拉伸行为[J]. 硅酸盐学报, 2021, 49(6):1206-1212.

    LI Xuqin, CHEN Xu, CHEN Jingyi, et al. Fabrication and tensile behaviors of plain woren C/SiC Z-pinned joint[J]. Journal of the Chinese Ceramic Society,2021,49(6):1206-1212(in Chinese).
    [19] LI G D, ZHANG C R, HU H F, et al. Preparation and mechanical properties of C/SiC nuts and bolts[J]. Materials Science and Engineering: A, 2012, 547: 1-5.
    [20] 刘杰, 李海滨, 刘小瀛. 3D针刺C/SiC复合材料螺栓的低成本制备及力学性能[J]. 航空学报, 2013, 34(7):1724-1730.

    LIU Jie, LI Haibin, LIU Xiaoying. Low cost preparation and mechanical property of three-dimensional needled C/SiC bolts[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7):1724-1730(in Chinese).
    [21] DELHAES P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon,2002,40(5):641-657. doi: 10.1016/S0008-6223(01)00195-6
    [22] ZHANG W G, HU Z J, HÜTTINGER K J. Chemical vapor infiltration of carbon fiber felt: Optimization of densification and carbon microstructure[J]. Carbon,2002,40(14):2529-2545. doi: 10.1016/S0008-6223(02)00206-3
    [23] 付茂青. C/SiC复合材料薄壁连接结构等效建模与强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    FU Maoqing. Equivalent modeling and strength analysis of C/SiC composite thin-walled joint structrure[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [24] HE Z B, ZHANG L T, CHEN B, et al. Microstructure and mechanical properties of SiC bonded joints prepared by CVI[J]. International Journal of Adhesion and Adhesives,2016,64:15-22. doi: 10.1016/j.ijadhadh.2015.09.009
    [25] 马雪寒, 王守财, 陈旭, 等. 陶瓷基复合材料紧固件制造技术及其连接性能研究进展[J]. 复合材料学报, 2023, 40(6): 3075-3089.

    MA Xuehan, WANG Shoucai, CHEN Xu, et al. Review of preparation processes and joining performance of ceramic matrix composite fasteners[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3075-3089(in Chinese).
    [26] 卢越, 张海鹏. 陶瓷基复合材料螺栓渐进损伤计算与强度预测[J]. 设备管理与维修, 2020(2):30-31. doi: 10.16621/j.cnki.issn1001-0599.2020.01D.15

    LU Yue, ZHANG Haipeng. Progressive damage calculation and strength prediction of ceramic matrix composite bolts[J]. Plant Maintenance Engineering,2020(2):30-31(in Chinese). doi: 10.16621/j.cnki.issn1001-0599.2020.01D.15
    [27] 谭志勇, 王捷冰, 孟繁夫, 等. 配合条件对C/SiC在线铆接单元的力学性能影响[J]. 复合材料学报, 2023, 40(7):4270-4281. doi: 10.13801/j.cnki.fhclxb.20220930.004

    TAN Zhiyong, WANG Jiebing, MENG Fanfu, et al. Effect of fit conditions on mechanical properties of C/SiC online riveting unit[J]. Acta Materiae Compositae Sinica,2023,40(7):4270-4281(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220930.004
  • 加载中
图(9)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  354
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-05
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-04-10
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回