留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学和扩展有限元的金属微胶囊破裂性研究

黄华 黄晖阳 郭润兰 李辉 王若彤

黄华, 黄晖阳, 郭润兰, 等. 基于分子动力学和扩展有限元的金属微胶囊破裂性研究[J]. 复合材料学报, 2023, 40(12): 6934-6944. doi: 10.13801/j.cnki.fhclxb.20230403.002
引用本文: 黄华, 黄晖阳, 郭润兰, 等. 基于分子动力学和扩展有限元的金属微胶囊破裂性研究[J]. 复合材料学报, 2023, 40(12): 6934-6944. doi: 10.13801/j.cnki.fhclxb.20230403.002
HUANG Hua, HUANG Huiyang, GUO Runlan, et al. Study on cracking performance of metal microcapsules based on molecular dynamics and extended finite element method[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6934-6944. doi: 10.13801/j.cnki.fhclxb.20230403.002
Citation: HUANG Hua, HUANG Huiyang, GUO Runlan, et al. Study on cracking performance of metal microcapsules based on molecular dynamics and extended finite element method[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6934-6944. doi: 10.13801/j.cnki.fhclxb.20230403.002

基于分子动力学和扩展有限元的金属微胶囊破裂性研究

doi: 10.13801/j.cnki.fhclxb.20230403.002
基金项目: 国家自然科学基金(51965037;51565030)
详细信息
    通讯作者:

    黄华,博士,教授,博士生导师,研究方向为复合材料研究与应用、复合材料加工技术与装备 E-mail: hh318872@126.com

  • 中图分类号: TH145.9;TB333

Study on cracking performance of metal microcapsules based on molecular dynamics and extended finite element method

Funds: National Natural Science Foundation of China (51965037; 51565030)
  • 摘要: 在树脂矿物复合材料中掺入微胶囊实现材料自愈得到了广泛应用,而新出现的金属微胶囊解决了传统微胶囊力学和鲁棒等性能较差的问题。但因金属微胶囊与基体间的界面力学性能尚未可知,使其破裂性无法确定,进而无法将金属微胶囊推广。针对这一问题,本文提出利用分子动力学方法对金属微胶囊的囊壁/树脂基体界面损伤演化过程进行模拟,获得界面力学性能。以此为基础,运用扩展有限元对金属微胶囊的破裂性进行分析,为金属微胶囊的运用提供研究指导和理论依据。研究结果表明:(1) 分子动力学模拟囊壁/基体界面模型损伤演化过程可以分为初始变形、局部破坏和整体破坏3个过程;(2) 囊壁/基体界面弹性模量为6.458 GPa,强度极限为62 MPa;(3) 金属微胶囊只会在基体裂纹出现后破损,但破损时间早于基体裂纹到达金属微胶囊处。

     

  • 图  1  内聚力单元双线型本构模型

    Figure  1.  Two line constitutive model of cohesion

    T—Tractive force; δ—Damage displacement; K—Interface stiffness; δ0—Initial damage displacement; δf—Maximum damage displacement; Tc—Damage threshold; Γ—Fracture energy

    图  2  双酚 A 型环氧树脂(DGEBA,E51)结构式及分子动力学模型

    Figure  2.  Structural formula and molecular dynamics model of diglycidyl ether ofbisphenol (DGEBA, E51)

    图  3  甲基环己二胺(HTDA)结构式及分子动力学模型

    Figure  3.  Structural formula and molecular dynamics model of 4-methylcyclohexane-1, 3-diamine (HTDA)

    图  4  金属囊壁和环氧树脂基体界面模型结构示意图

    Figure  4.  Schematic diagram of interface model structure between metal capsule wall and epoxy resin matrix

    图  5  金属囊壁和环氧树脂基体界面损伤演化过程

    Figure  5.  Damage evolution process of interface between metal capsule wall and epoxy resin matrix

    图  6  金属囊壁和环氧树脂界面应力-应变曲线

    Figure  6.  Stress-strain curve of capsule wall/matrix interface between metal capsule wall and epoxy resin matrix

    图  7  含预设裂纹及微胶囊的单元体模型

    Figure  7.  Element model with preset cracks and a microcapsule

    图  8  单元体预设裂纹扩展过程

    Figure  8.  Cracks propagation process of element model with preset cracks

    Δt—Crack propagation time; STATUSXFEM—Status extended finite element method

    图  9  含预制裂纹 (a) 与无预制裂纹 (b) 单元体应力分布图

    Figure  9.  With preset cracks (a) and without preset cracks (b) stress distribution diagram of element model

    表  1  自愈合树脂矿物复合材料各组分材料属性

    Table  1.   Properties of each component of self-healing resin mineral composite

    ComponentMaterialDensity/cm3Elastic modulus
    /GPa
    Poisson's ratioUltimate strength
    /MPa
    Capsule wall91.2wt% Ni
    and 8.8wt% P
    8.22000.3120
    MatrixEpoxy resin1.2 310.3 67
    Interface 6.4580.3 62
    下载: 导出CSV
  • [1] MA Y, LI F Y, WANG L M, et al. Life cycle carbon emission assessments and comparisons of cast iron and resin mineral composite machine tool bed in China[J]. The International Journal of Advanced Manufacturing Technology,2021,113(3-4):1143-1152.
    [2] GAO Y, ZHANG H L, KANG H N, et al. Road performance of liquid nitrile-butadiene rubber modified unsaturated polyester resin concrete[J]. Construction and Building Materials,2020,263:311-324.
    [3] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature,2001,409(6822):794-797.
    [4] 肖春平, 万里鹰, 张崇印, 等. 环氧树脂-脲醛树脂@2-甲基咪唑微胶囊/环氧树脂复合材料的制备及自修复性能[J]. 复合材料学报, 2019, 36(9):2013-2022.

    XIAO Chunping, WAN Liying, ZHANG Chongyin, et al. Preparation and self-healing properties of epoxy resin-urea formaldehyde resin@2-methylimidazole microcapsules/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2019,36(9):2013-2022(in Chinese).
    [5] 张浩, 熊磊, 徐紫茹, 等. 均匀粒度分布的双壳相变储湿微胶囊制备[J]. 复合材料学报, 2017, 34(11):2556-2561. doi: 10.13801/j.cnki.fhclxb.20170112.003

    ZHANG Hao, XIONG Lei, XU Ziru, et al. Preparation of double-shell phase change and humidity storage micro-capsules with uniform particle size distribution[J]. Acta Materiae Compositae Sinica,2017,34(11):2556-2561(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170112.003
    [6] 程家骥, 王旭, 王浩东. 聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶[J]. 复合材料学报, 2021, 38(1):232-238.

    CHENG Jiaji, WANG Xu, WANG Haodong. Expandable graphite microencapsulated with polyurea shell flame retardant natural rubber[J]. Acta Materiae Compositae Sinica,2021,38(1):232-238(in Chinese).
    [7] 朱月风, 赵向臻, 司春棣, 等. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10):44-49.

    ZHU Yuefeng, ZHAO Xiangzhen, SI Chundi, et al. Mechanical analysis and fracture mechanism of self-healing microcapsules in asphalt pavement[J]. Materials Reports,2022,36(10):44-49(in Chinese).
    [8] DU W, LIU Q T, LIN R S, et al. Influence of external environment on self-repairing ability of the cement-based materials containing paraffin/toluene-di-isocyanate microcapsules[J]. Construction and Building Materials,2021,281:122584. doi: 10.1016/j.conbuildmat.2021.122584
    [9] MUHAMMAD N Z, SHAFAGHAT A, KEYVANFAR A, et al. Tests and methods of evaluating the self-healing efficiency of concrete: A review[J]. Construction and Building Mate-rials,2016,112:1123-1132. doi: 10.1016/j.conbuildmat.2016.03.017
    [10] 梁鼒, 王倩, 董必钦, 等. 具有离子响应性的聚(1-乙烯基-3-乙基咪唑四氟硼酸盐)@CaO微胶囊的表征及触发释放[J]. 复合材料学报, 2019, 36(7):1761-1768.

    LIANG Zi, WANG Qian, DONG Biqin, et al. Characteration and triggered release of ion-responsive poly (1-vinyl-3-ethylimidazolium tetrafluoroborate)@CaO microcapsules[J]. Acta Materiae Compositae Sinica,2019,36(7):1761-1768(in Chinese).
    [11] 张春梅, 程小伟, 杨永胜, 等. 固井水泥环微裂纹自修复微胶囊的制备与性能研究[J]. 硅酸盐通报, 2018, 37(6):2035-2041.

    ZHANG Chunmei, CHENG Xiaowei, YANG Yongsheng, et al. Synthesis and performance study of self-repairing microcapsules for micro-cracks of oil-well cement matrix[J]. Bulletin of the Chinese Ceramic Society,2018,37(6):2035-2041(in Chinese).
    [12] HUANG Y H, SALMON F, KAMBLE A, et al. Models for the mechanical characterization of core-shell microcapsules under uniaxial deformation-ScienceDirect[J]. Food Hydrocolloids, 2021, 119: 106762.
    [13] SUN D W, AN J L, WU G, et al. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings[J]. Journal of Materials Chemistry A,2015,3(8):4435-4444.
    [14] ZHANG H, YANG J L. Etched glass bubbles as robust micro-containers for self-healing materials[J]. Journal of Materials Chemistry A,2013,1(41):12715-12720.
    [15] ZHANG H, WANG P F, YANG J L. Self-healing epoxy via epoxy-amine chemistry in dual hollow glass bubbles[J]. Composites Science and Technology,2014,94(4):23-29.
    [16] ZHANG H, ZHANG X, BAO C L, et al. Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self-healing materials[J]. Journal of Materials Chemistry A,2018,6(47):24092-24099. doi: 10.1039/C8TA08324J
    [17] HU J F, ZHANG X T, QU J Q, et al. Synthesis, characterizations and mechanical properties of microcapsules with dual shell of polyurethane (PU)/melamine formaldehyde (MF): Effect of different chain extenders[J]. Industrial & Engineering Chemistry Research,2018,57(10):3591-3601.
    [18] REN Y M, ABBAS N, ZHU G M, et al. Synthesis and mechanical properties of large size silica shell microcapsules for self-healing cementitious materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,587:124347.
    [19] SUN D W, ZHANG H, ZHANG X, et al. Robust metallic microcapsules: A direct path to new multifunctional materials[J]. ACS Applied Materials & Interfaces,2019,11(5):9621-9628.
    [20] TSUNEYOSHI T, ONO T. Metal-coated microcapsules with tunable magnetic properties synthesized via electroless plating[J]. Materials Science and Engineering: B,2017,4(222):49-54.
    [21] ZABIHI Z, ARAGHI H, RODRIGUEZ P E D S, et al. Vapor sensing and interface properties of reduced graphene oxidepoly (methyl methacrylate) nanocomposite[J]. Journal of Materials Science: Materials in Electronics,2019,30(3):2908-2919.
    [22] 戴姗姗, 寇子敏, 刘艳, 等. SiO2/聚丙烯酰胺核壳结构复合材料的分子动力学模拟[J]. 化工进展, 2018, 37(9):3547-3554.

    DAI Shanshan, KOU Zimin, LIU Yan, et al. Molecular dynamics simulation of SiO2/PAM composites with a core-shell structure[J]. Chemical Industry and Engineering Progress,2018,37(9):3547-3554(in Chinese).
    [23] 李源才, 江五贵, 周宇. 单晶/多晶镍复合体剪切过程分子动力学模拟[J]. 中国有色金属学报, 2020, 30(8):1837-1845. doi: 10.11817/j.ysxb.1004.0609.2020-35831

    LI Yuancai, JIANG Wugui, ZHOU Yu. Molecular dynamics simulation on shear mechanical properties of single crystal/polycrystalline Ni composites[J]. The Chinese Journal of Nonferrous Metals,2020,30(8):1837-1845(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-35831
    [24] 梁桂强, 邵睿, 姚琳, 等. 半共格界面铜镍双层膜力学差异机制纳观探析[J]. 摩擦学学报, 2021, 41(5):647-656.

    LIANG Guiqiang, SHAO Rui, YAO Lin, et al. Mechanism analysis of mechanical properties for Cu-Ni bilayers with semi-coherent interface: A molecular simulation[J]. Tribology,2021,41(5):647-656(in Chinese).
    [25] LI Y Q, FAN W B, LI X, et al. Nucleation mechanism of iron in an external magnetic field[J]. Chinese Journal of Che-mical Physics,2021,34(6):843-849. doi: 10.1063/1674-0068/cjcp2110199
    [26] CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering,2019,162(11):283-288.
    [27] WANG X, LI N, WANG J Y, et al. Hyperbranched polyether epoxy grafted graphene oxide for benzoxazine composites: Enhancement of mechanical and thermal properties[J]. Composites Science and Technology,2018,155(3):11-21.
    [28] MAULUDIN L M, ZHUANG X Y, RABCZUK T. Computational modeling of fracture in encapsulation-based self-healing concrete using cohesive elements[J]. Composite Structures,2018,196(6):63-75.
    [29] HUANG F C, PANG X F, ZHU F L, et al. Transverse mechanical properties of unidirectional FRP including resin-rich areas[J]. Computational Materials Science,2021,198(9):168-179.
    [30] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Jour-nal for Numerical Methods in Engineering,1999,45(5):601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [31] 熊成, 付春娟, 刘建华, 等. 偶联剂处理镀镍碳纤维/环氧树脂界面特性[J]. 复合材料学报, 2013, 30(3):39-44.

    XIONG Cheng, FU Chunjuan, LIU Jianhua, et al. Effect of coupling treatment on the interface characteristic of nickel plating carbon fiber/resin[J]. Acta Materiae Compositae Sinica,2013,30(3):39-44(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  94
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-25
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回