留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米蛋黄核壳结构锂离子电池硅碳负极材料研究进展

隋林秀 胡单单 石津津 袁小亚 金湛

隋林秀, 胡单单, 石津津, 等. 纳米蛋黄核壳结构锂离子电池硅碳负极材料研究进展[J]. 复合材料学报, 2023, 40(8): 4390-4415. doi: 10.13801/j.cnki.fhclxb.20230403.001
引用本文: 隋林秀, 胡单单, 石津津, 等. 纳米蛋黄核壳结构锂离子电池硅碳负极材料研究进展[J]. 复合材料学报, 2023, 40(8): 4390-4415. doi: 10.13801/j.cnki.fhclxb.20230403.001
SUI Linxiu, HU Dandan, SHI Jinjin, et al. Research progress of nano yolk-shell structured silicon/carbon anode materials for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4390-4415. doi: 10.13801/j.cnki.fhclxb.20230403.001
Citation: SUI Linxiu, HU Dandan, SHI Jinjin, et al. Research progress of nano yolk-shell structured silicon/carbon anode materials for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4390-4415. doi: 10.13801/j.cnki.fhclxb.20230403.001

纳米蛋黄核壳结构锂离子电池硅碳负极材料研究进展

doi: 10.13801/j.cnki.fhclxb.20230403.001
基金项目: 国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028);重庆交通大学研究生科研创新项目(2022S0060)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为纳米复合材料、储能材料等领域 E-mail: yuanxy@cqjtu.edu.cn

  • 中图分类号: TB332;TM911

Research progress of nano yolk-shell structured silicon/carbon anode materials for lithium-ion batteries

Funds: National Natural Science Foundation of China (51402030); Chongqing Special Fund for Basic Science and Advanced Technology Research (cstc2017jcyjBX0028); Graduate Research and Innovation Program of Chongqing Jiaotong University (2022S0060)
  • 摘要: 由于硅的大体积变化和电导率差等问题,这种容量高达4200 mA·h·g−1的负极材料难以实现商业化。蛋黄核壳结构的硅碳负极是目前锂离子电池硅碳负极材料研究的热点,该结构可以很好地缓解硅负极在充放电过程中因体积膨胀而引发的一系列问题,从而获得优越的储锂性能。本文对蛋黄核壳结构硅碳负极的碳源、结构类型和制备工艺等进行了分类和总结,并对一些重要的结构参数进行了阐述,展望了未来蛋黄核壳结构硅碳负极的发展方向。

     

  • 图  1  自支撑碳壳包裹的纳米硅结构示意图 [11]

    Figure  1.  Schematic diagram of self-supporting carbon shell-wrapped nano-silicon structure[11]

    图  2  在蛋黄核壳结构硅碳负极材料碳壳表面上的固体电解质界面(SEI)膜形成示意图[13]

    Figure  2.  Schematic diagram of solid electrolyte interface (SEI) membrane formation on the surface of the carbon shell of the silicon/carbon anode material in the yolk-shell structure[13]

    YS—Yolk-shell; Si@50mC—Void space designed to be 50 nm

    图  3  蛋黄核壳硅@还原氧化石墨烯/非晶碳(YS-Si@rGO/a-C)复合材料结构示意图[15]

    rGO/a-C—Reduced graphene oxide/amorphous carbon; Si-APS—Si modified by aminopropyltrimethoxysilane

    Figure  3.  Schematic diagram of yolk core shell silicon@reduced GO/amorphous carbon (YS-Si@rGO/a-C) composite structure[15]

    图  4  Si@C@void@CNTs纳米复合材料结构示意图[19]

    Figure  4.  Schematic diagram of the structure of Si@C@void@CNTs nanocomposites[19]

    CNT—Carbon nano tube; CVD—Chemical vapor deposition; RF—Resorcinol-formaldehyde; TEOS—Tetraethyl orthosilicate

    图  5  N-riched Si@void@C/CNTs微球结构示意图[18]

    Figure  5.  Schematic diagram of the structure of N-riched Si@void@C/CNTs microspheres[18]

    图  6  介孔碳封装硅纳米颗粒的蛋黄核壳结构示意图 [13]

    mSiO2—Mesoporous SiO2; CTAB—Hexadecyltrimethylammonium bromide; YS Si@mC—Yolk-shell structure of Si@mesoporous carbon

    Figure  6.  Schematic diagram of the yolk-shell structure of mesoporous carbon-encapsulated silicon nanoparticles [13]

    图  7  新型双碳层蛋黄核壳结构硅碳复合负极材料结构示意图[26]

    Figure  7.  Schematic diagram of the new type of yolk-shell structured Si/C composite anode material[26]

    图  8  Si@void@C纳米复合材料结构示意图[27]

    Figure  8.  Schematic diagram of the structure of Si@void@C nanocomposites[27]

    图  9  Si/void-SC的制备工艺流程图[29]

    EDOT—3, 4-ethylenedioxythiophene; PSSNa—Poly(styrene sulfonate) sodium; PEDOT : PSS—Si/3, 4-ethylene-dioxythiophene:poly(styrenesulfonate)

    Figure  9.  Preparation process flow diagram of Si/void-SC[29]

    图  10  YS-SiOx/C@C复合负极材料结构示意图 [30]

    VTMS—Vinyltrimethoxysilane; PPy—Polypyrrole; YS—Yolk-shell structure

    Figure  10.  Schematic diagram of YS-SiOx/C@C composite anode material [30]

    图  11  N、S共掺杂SiOx/C@void@C复合负极材料结构示意图[31]

    MPTS—3-mercaptopropyl trimethoxysilane

    Figure  11.  Schematic diagram of N, S co-doped SiOx/C@void@C composite anode material[31]

    图  12  SiO2@NPC YS复合负极材料结构示意图[32]

    Figure  12.  SiO2@NPC YS schematic diagram of the structure of composite anode material[32]

    NPC—N, P co-doped carbon; SiO2@NPC YS—Yolk-shell-structured SiO2@N, P co-doped carbon spheres

    图  13  Si@void@C复合材料的制备路线示意图[42]

    NPs—Nanoparticles; PEI—Polyethyleneimine; SA—Sodium alginate

    Figure  13.  Schematic diagram of the preparation route of Si@void@C composite[42]

    图  14  Si@C@void@C复合材料结构示意图[28]

    PS—Polystyrene; MPS—Methacryloxy(propyl) trimethoxysilane; PAni—Polyaniline

    Figure  14.  Schematic diagram of the structure of Si@C@void@C composite[28]

    图  15  Si@C@void@C复合材料结构示意图[43]

    Figure  15.  Schematic diagram of the structure of Si@C@void@C composite[43]

    图  16  基于Si纳米粒子表面改性和自组装得到的2D-Si@石墨碳(gC)的合成流程图[44]

    OA—Oleic acid; PE—Polyethylene; 2D-Si@gC—Two-dimensional (2D) assemblies of interconnected Si@graphitic carbon yolk-shell nanoparticles

    Figure  16.  Flow chart of 2D-Si@graphitic carbon (gC) synthesis based on surface modification and self-assembly of Si nanoparticles[44]

    图  17  空心石墨碳球来封装硅纳米颗粒制备路线图[10]

    Figure  17.  Roadmap for preparing hollow graphite carbon spheres to encapsulate silicon nanoparticles[10]

    图  18  Si/SiOx@void@C复合材料制备工艺图[45]

    R-SiO2—Refined SiO2

    Figure  18.  Si/SiOx@void@C composite preparation process diagram[45]

    图  19  覆盆子状蛋黄壳结构硅碳微纳米球复合材料结构示意图[47]

    NP—Nanocomposite; NMP—Nitromethyl-pyrrolidone; HTT—Heat treatment; P-SD—Collected Si@SiO2 powder obtained by spray drying; R-YS—Raspberry-like yolk-shell structured

    Figure  19.  Schematic diagram of raspberry-shaped yolk-shell structure silicon-carbon micro-nanosphere composite[47]

    图  20  Si@C@ZIF-67-800 N蛋黄核壳复合材料的合成示意图[48]

    Figure  20.  Schematic diagram of the synthesis of Si@C@ZIF-67-800 N yolk-shell composite[48]

    图  21  CaCO3作为牺牲层制备多核壳蛋黄结构的制备流程图[49]

    Figure  21.  Preparation flow chart of CaCO3 as sacrificial layer to prepare multi-nucleated yolk-shell structure[49]

    图  22  ${\rm{Si@C}} \subseteq {\rm{Ni}} $蛋黄核壳结构纳米材料制备流程图 [50]

    DA—Dopamine; NNH—Nickel nitrate hydroxide; ${\rm{Si@C}} \subseteq {\rm{NiY}} $−S—Si@C nanoparticles firmly trappe in a durable and ultrathin Ni matrix

    Figure  22.  Flow chart of preparation of nanomaterials with yolk-shell structure of ${\rm{Si@C}} \subseteq {\rm{Ni}} $ yolk-shell structure[50]

    图  23  空心Si@void@C蛋黄壳微球合成过程[51]

    h-Si—Hollow Si; CTAB—Cetyltrimethyl ammonium bromide

    Figure  23.  Synthesis process of hollow Si@void@C yolk-shell microspheres[51]

    图  24  嵌入Fe3O4 纳米颗粒(NPs)的CNTs网络连接Si和C/SiO2双壳材料结构示意图[52]

    Figure  24.  CNTs network connected Si and C/SiO2 embedded Fe3O4 nanoparticles (NPs) schematic diagram of the structure of the double-hull material[52]

    图  25  互联碳网络交联的Si@void@C合成路线图[53]

    APTES—(3-Aminopropyl)triethoxysilane

    Figure  25.  Road map for Si@void@C synthesis of interconnected carbon network crosslinking[53]

    图  26  硬模板法制备蛋黄核壳结构硅碳纳米球示意图[12]

    Figure  26.  Schematic diagram of silicon-carbon nanospheres prepared by kernel shell structure of yolk-shell by hard template method[12]

    图  27  碱性蚀刻的蛋黄核壳结构硅碳纳米复合材料结构示意图[55]

    Figure  27.  Schematic diagram of alkaline etched yolk-shell structure silicon/carbon nanocomposite[55]

    图  28  蛋黄壳结构的多孔硅碳微球结构示意图[58]

    P123—Triblock copolymer PEO-PPO-PEO; mp—Mesoporous

    Figure  28.  Schematic diagram of porous silicon-carbon microspheres with yolk-shell structure[58]

    图  29  硫化羰为前驱体制备的Si@void@C电极材料制备工艺图[60]

    COS—Chito-oligosaccharide

    Figure  29.  Preparation process diagram of Si@void@C electrode material prepared by carbonyl sulfide as a precursor[60]

    图  30  Si@空心碳壳(HC)蛋黄核壳结构硅碳负极材料结构示意图[61]

    Figure  30.  Schematic diagram of silicon-carbon anode material structure of Si@hollow carbon (HC) yolk-shell structure[61]

    图  31  氧化镁作为牺牲层制备的Si@void@C硅碳负极结构示意图[63]

    Figure  31.  Schematic diagram of Si@void@C silicon-carbon anode prepared by magnesium oxide as a sacrificial layer[63]

    图  32  铝硅合金作为硅源的蛋黄核壳结构硅碳负极制备工艺[14]

    Figure  32.  Preparation process of silicon-carbon anode of yolk-shell structure of aluminum-silicon alloy as silicon source[14]

    图  33  Si/void/SiO2/void/C复合材料结构示意图[33]

    Figure  33.  Schematic diagram of Si/void/SiO2/void/C composite[33]

    图  34  气体模板法制备的蛋黄核壳结构介孔硅(M-Si)/C纳米复合材料结构示意图[70]

    Figure  34.  Schematic diagram of mesoporous Si (M-Si)/C nanocomposites of yolk-shell structure prepared by gas template method[70]

    图  35  油中水微乳液工艺制备蛋黄核壳结构硅碳负极材料的流程图[71]

    Figure  35.  Flow diagram of the preparation of silicon/carbon anode materials with yolk-shell structure by water-in-oil microemulsion process[71]

    图  36  SiOx/C@void@Si/C纳米粒子的合成工艺[54]

    Figure  36.  Synthesis process of SiOx/C@void@Si/C nanoparticles[54]

    图  37  蛋黄核壳结构的Si/void/rGO自支撑电极结构示意图[16]

    GO—Graphene oxide

    Figure  37.  Schematic diagram of Si/void/rGO free-standing electrode structure of yolk-shell structure[16]

    图  38  石墨烯/碳纳米管骨架组成的自支撑硅碳负极制备工艺和结构示意图[82]

    MWCNT—Multiwalled carbon nanotubes

    Figure  38.  Schematic diagram of the preparation process and structure of free-standing silicon/carbon anode composed of graphene/carbon nanotube skeleton[82]

    图  39  Si@void@CNF复合材料结构示意图[84]

    CNF—Carbon nanofiber; x h—x hours reaction

    Figure  39.  Schematic diagram of Si@void@CNF structural composite[84]

    图  40  Si@void@C/CNFs结构示意图[20]

    PAN—Polyacrylonitrile; DMF—Dimethylformamide

    Figure  40.  Schematic diagram of Si@void@C/CNFs structure[20]

    图  41  GF为前驱体制备的自支撑电极制造工艺图[85]

    Figure  41.  Manufacturing process diagram of free-standing electrode prepared by GF for precursor[85]

    GF—Waste glass microfiber filters; MgR—Magnesiothermic reduction; GF-dMGR—GFs after deep magnesiothermic reduction; GF-oxi—GFs after oxidation; GF-C30/Si—GF-derived Si/carbon composite electrode (carbon coating time in 30 minutes)

    图  42  (a) 在不同空隙尺寸停止锂化和碳壳断裂的情况;(b) 碳壳层内部体积/原始硅的体积(Vc/Vp)= 1.5;(c) Vc/Vp = 3;(d) Vc/Vp = 3.6[86]

    SOC—State of charge; Rou/Rin—A carbon shell with initial inner radius Rin and outer radius Rou

    Figure  42.  (a) Cases where lithiation and carbon shell fracture are stopped at different void sizes; (b) Internal volume of the carbon shell/volume of the original silicon (Vc/Vp)= 1.5; (c) Vc/Vp=3; (d) Vc/Vp=3.6[86]

    图  43  Si@void@C半电池的电压与比容量曲线:(a) 粒径为100~650 nm Si@void@C粉末;(b) 粒径为100至大于1200 nm Si@void@C粉末[87]

    Figure  43.  Voltage and specific capacity curve of Si@void@C half-cell: (a) Powder with particle size of 100-650 nm Si@void@C powder; (b) Powder with particle size from 100 to greater than 1200 nm[87]

  • [1] ZHANG T, FU L, GAO J, et al. Core-shell Si/C nanocompo-site as anode material for lithium ion batteries[J]. Pure and Applied Chemistry,2006,78(10):1889-1896. doi: 10.1351/pac200678101889
    [2] FENG Z Y, PENG W J, WANG Z X, et al. Review of silicon-based alloys for lithium-ion battery anodes[J]. International Journal of Minerals Metallurgy and Materials,2021,28(10):1549-1564. doi: 10.1007/s12613-021-2335-x
    [3] HSIEH C C, LIU W R. Carbon-coated Si particles binding with few-layered graphene via a liquid exfoliation process as potential anode materials for lithium-ion batteries[J]. Surface & Coatings Technology,2020,387:7-14.
    [4] BENZAIT Z, YUCA N. Synergistic effect of carbon nanomaterials on a cost-effective coral-like Si/rGO composite for lithium-ion battery application[J]. Electrochimica Acta,2020,339:12-24.
    [5] RAHMAN M A, SONG G S, BHATT A I, et al. Nanostructured silicon anodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2016,26(5):647-678. doi: 10.1002/adfm.201502959
    [6] ZHAO H, WEI Y, WANG C, et al. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(6):5440-5446.
    [7] GU M, LI Y, LI X L, et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano,2012,6(9):8439-8447. doi: 10.1021/nn303312m
    [8] ZUO X X, ZHU J, MULLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy,2017,31:113-143. doi: 10.1016/j.nanoen.2016.11.013
    [9] LIN L S, SONG J B, YANG H H, et al. Yolk-shell nanostructures: Design, synthesis, and biomedical applications[J]. Advanced Materials,2018,30(6):30−60.
    [10] MA X, GAO Y, CHEN M, et al. Synthesis of robust silicon nanoparticles@void@graphitic carbon spheres for high-performance lithium-ion-battery anodes[J]. Chemelectrochem,2017,4(6):1463-1469. doi: 10.1002/celc.201700173
    [11] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters,2012,12(6):3315-3321. doi: 10.1021/nl3014814
    [12] LIU J, QIAO S Z, CHEN J S, et al. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries[J]. Chemical Communications,2011,47(47):12578-12591. doi: 10.1039/c1cc13658e
    [13] YANG J, WANG Y X, CHOU S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy,2015,18:133-142. doi: 10.1016/j.nanoen.2015.09.016
    [14] GONG X H, ZHENG Y B, ZHENG J, et al. Yolk-shell silicon/carbon composites prepared from aluminum-silicon alloy as anode materials for lithium-ion batteries[J]. Ionics,2021,27(5):1939-1948. doi: 10.1007/s11581-021-03967-5
    [15] LIN M H, HY S, CHEN C Y, et al. Resilient yolk-shell silicon-reduced graphene oxide/amorphous carbon anode material from a synergistic dual-coating process for lithium-ion batteries[J]. Chemelectrochem,2016,3(9):1446-1454. doi: 10.1002/celc.201600254
    [16] SHAO J, YANG Y, ZHANG X Y, et al. 3D yolk-shell structured Si/void/rGO free-standing electrode for lithium-ion battery[J]. Materials,2021,14(11):13-26.
    [17] ZHANG L, HUANG Q W, LIAO X Z, et al. Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification[J]. Energy & Environmental Science,2021,14(6):3502-3509.
    [18] GAO Y, QIU X T, WANG X L, et al. Facile preparation of nitrogen-doped yolk-shell Si@void@C/CNTs microspheres as high-performance anode in lithium-ion batteries[J]. Materials Today Communications,2020,25:9-15.
    [19] HAN N, LI J J, WANG X C, et al. Flexible carbon nanotubes confined yolk-shelled silicon-based anode with superior conductivity for lithium storage[J]. Nanomaterials,2021,11(3):11-22.
    [20] XIE X, XIAO P, PANG L, et al. Facile synthesis of yolk-shell Si@void@C nanoparticles with 3D conducting networks as free-standing anodes in lithium-ion batteries[J]. Journal of Alloys and Compounds,2023,931:167473. doi: 10.1016/j.jallcom.2022.167473
    [21] HE Y L, HAN F, WANG F, et al. Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage[J]. Electrochimica Acta,2021,373:11−22.
    [22] WU P, GUO C, HAN J, et al. Fabrication of double core-shell Si-based anode materials with nanostructure for lithium-ion battery[J]. RSC Advances,2018,8(17):9094-9102. doi: 10.1039/C7RA13606D
    [23] LIN N, XU T J, LI T Q, et al. Controllable self-assembly of micro-nanostructured Si-embedded graphite/graphene composite anode for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(45):39318-39325.
    [24] SEHRAWAT P, SHABIR A, ABI D, et al. Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries[J]. Journal of Power Sources,2021,501:33 − 66.
    [25] PENG J, LI W W, WU Z Y, et al. Si/C composite embedded nano-Si in 3D porous carbon matrix and enwound by conductive CNTs as anode of lithium-ion batteries[J]. Sustainable Materials and Technologies,2022,32:e00410. doi: 10.1016/j.susmat.2022.e00410
    [26] HU L, LUO B, WU C H, et al. Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes[J]. Journal of Energy Chemistry,2019,32:124-130. doi: 10.1016/j.jechem.2018.07.008
    [27] SU L, XIE J, XU Y, et al. Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites[J]. Physical Chemistry Chemical Physics,2015,17(27):17562-17565. doi: 10.1039/C5CP01954K
    [28] HUANG X, SUI X, YANG H, et al. Hf-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(6):2593-2599. doi: 10.1039/C7TA08283E
    [29] SHAO D, SMOLIANOVA I, TANG D, et al. Novel core-shell structured Si/S-doped-carbon composite with buffering voids as high performance anode for Li-ion batteries[J]. RSC Advances,2017,7(5):2407-2414. doi: 10.1039/C6RA26247C
    [30] ZHANG Y Y, HU G W, YU Q, et al. Polydopamine sacrificial layer mediated SiOx/C@C yolk@shell structure for durable lithium storage[J]. Materials Chemistry Frontiers,2020,4(6):1656-1663. doi: 10.1039/D0QM00120A
    [31] WANG H Q, QUE X Q, LIU Y N, et al. Facile synthesis of yolk-shell structured SiOx/C@void@C nanospheres as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,874:7-14.
    [32] MIN K, KIM K, AN H, et al. Yolk-shell-structured SiO2@N, P co-doped carbon spheres as highly stable anode materials for lithium ion batteries[J]. Journal of Power Sources,2022,543:12-22.
    [33] YANG L Y, LI H Z, LIU J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Scientific Reports, 2015: 5-14.
    [34] LIU Z H, ZHAO Y L, HE R H, et al. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage[J]. Energy Storage Materials,2019,19:299-305. doi: 10.1016/j.ensm.2018.10.011
    [35] GUO S C, HU X, HOU Y, et al. Tunable synthesis of yolk-shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(48):42084-42092.
    [36] PARK S W, SHIM H W, KIM J C, et al. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J]. Journal of Alloys and Compounds,2017,728:490-496. doi: 10.1016/j.jallcom.2017.09.023
    [37] LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale,2013,5(3):1168-1175. doi: 10.1039/c2nr33043a
    [38] WEI Y B, HUANG Y D, ZENG Y F, et al. Designed formation of yolk-shell-like N-doped carbon-coated Si nanoparticles by a facile method for lithium-ion battery anodes[J]. ACS Applied Energy Materials,2022,5(2):1471-1477. doi: 10.1021/acsaem.1c02785
    [39] SHIN W H, JEONG H M, KIM B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters,2012,12(5):2283-2288. doi: 10.1021/nl3000908
    [40] GAO C H, ZHAO H L, LV P P, et al. Superior cycling performance of SiOx/C composite with arrayed mesoporous architecture as anode material for lithium-ion batteries[J]. Journal of the Electrochemical Society,2014,161(14):A2216-A2221. doi: 10.1149/2.0911414jes
    [41] JUNG H J, KIM Y J, LEE D H, et al. Pore structure characterization of poly(vinylidene chloride)-derived nanoporous carbons[J]. Carbon Letters,2012,13(4):236-242. doi: 10.5714/CL.2012.13.4.236
    [42] MI H W, YANG X D, LI Y L, et al. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,351:103-109. doi: 10.1016/j.cej.2018.06.065
    [43] XIE J, TONG L, SU L, et al. Core-shell yolk-shell Si@C@void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources,2017,342:529-536. doi: 10.1016/j.jpowsour.2016.12.094
    [44] CHEN X, CHEN C, ZHANG Y, et al. Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes[J]. Nano Research,2019,12(3):631-636. doi: 10.1007/s12274-018-2270-y
    [45] LU Y, CHANG P, WANG L B, et al. Yolk-shell Si/SiOx@void@C composites as anode materials for lithium-ion batteries[J]. Functional Materials Letters,2019,12(1):6-13.
    [46] CHEN M, ZHOU Q N, ZAI J T, et al. High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics[J]. Nano Research,2021,14(4):1004-1011. doi: 10.1007/s12274-020-3142-9
    [47] MA C L, WANG Z R, ZHAO Y, et al. A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,844:13-52.
    [48] LIU N T, LIU J, JIA D Z, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019
    [49] ZHANG L, RAJAGOPALAN R, GUO H, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries[J]. Advanced Functional Materials,2016,26(3):440-446. doi: 10.1002/adfm.201503777
    [50] JIANG J, ZHANG H, ZHU J H, et al. Putting nanoarmors on yolk-shell Si@C nanoparticles: A reliable engineering way to build better Si-based anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(28):24157-24163.
    [51] ZHOU Z W, PAN L, LIU Y T, et al. From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk-shell microspheres by aluminothermic reduction for lithium storage[J]. Chinese Chemical Letters,2019,30(3):610-617. doi: 10.1016/j.cclet.2018.08.018
    [52] ZHANG L, WANG C R, DOU Y H, et al. A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries[J]. Angewandte Chemie-International Edition,2019,58(26):8824-8828. doi: 10.1002/anie.201903709
    [53] JIAO Z, GAO Y, LIU S, et al. Controlled scalable synthesis of yolk-shell structured large-size industrial silicon with interconnected carbon network for lithium storage[J]. Electrochimica Acta,2018,283:1702-1711. doi: 10.1016/j.electacta.2018.07.143
    [54] CHEN W Y, KUANG S J, WEI H S, et al. Dual carbon and void space confined SiOx/C@void@Si/C yolk-shell nanospheres with high-rate performances and outstanding cyclability for lithium-ion batteries anodes[J]. Journal of Colloid and Interface Science,2022,610:583-591. doi: 10.1016/j.jcis.2021.11.099
    [55] PAN L, WANG H, GAO D, et al. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries[J]. Chemical Communications,2014,50(44):5878-5880. doi: 10.1039/C4CC01728E
    [56] XIAO Z L, XIA N, SONG L B, et al. Synthesis of yolk-shell-structured Si@C nanocomposite anode material for lithium-ion battery[J]. Journal of Electronic Materials,2018,47(10):6311-6318. doi: 10.1007/s11664-018-6513-1
    [57] CHEN Y F, ZHANG J Q, CHEN X Q, et al. Facile preparation of hollow Si/SiC/C yolk-shell anode by one-step magnesiothermic reduction[J]. Ceramics International,2019,45(14):17040-17047. doi: 10.1016/j.ceramint.2019.05.255
    [58] RU Y, EVANS D G, ZHU H, et al. Facile fabrication of yolk-shell structured porous Si-C microspheres as effective anode materials for Li-ion batteries[J]. RSC Advances,2014,4(1):71-75. doi: 10.1039/C3RA44752A
    [59] LI X Q, XING Y F, XU J, et al. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery[J]. Chemical Communications,2020,56(3):364-367. doi: 10.1039/C9CC07997A
    [60] SHAO T, LIU J, GAN L H, et al. Yolk-shell Si@void@C composite with chito-oligosaccharide as a C-N precursor for high capacity anode in lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids,2021,152:9-18.
    [61] ZHANG W, LI J J, GUAN P, et al. One-pot sol-gel synthesis of Si/C yolk-shell anodes for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,835:7-14.
    [62] ZHANG Y Z, QIN X, LIU Y, et al. Synthetic strategy of Si@void@C nanoparticles for high-performance lithium-ion battery anodes[J]. ACS Applied Energy Materials, 2022, 5(11): 14476-14486.
    [63] MA Y H, TANG H Q, ZHANG Y, et al. Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,704:599-606. doi: 10.1016/j.jallcom.2017.02.083
    [64] PARK J B, HAM J S, SHIN M S, et al. Synthesis and electrochemical characterization of anode material with titanium-silicon alloy solid core/nanoporous silicon shell structures for lithium rechargeable batteries[J]. Journal of Power Sources,2015,299:537-543. doi: 10.1016/j.jpowsour.2015.09.019
    [65] SU J, ZHANG C, CHEN X, et al. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode[J]. Journal of Power Sources,2018,381:66-71. doi: 10.1016/j.jpowsour.2018.02.010
    [66] LEE J S, SHIN M S, LEE S M. Electrochemical properties of polydopamine coated Ti-Si alloy anodes for Li-ion batteries[J]. Electrochimica Acta,2016,222:1200-1209. doi: 10.1016/j.electacta.2016.11.094
    [67] WU Z Q, YANG F, LI X M, et al. Solid and hollow nanoparticles templated using non-ionic surfactant-based reverse micelles and vesicles[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2022,634:7 −14.
    [68] LI Y Y, KRUK M. Single-micelle-templated synthesis of hollow silica nanospheres with tunable pore structures[J]. RSC Advances,2015,5(85):69870-69877. doi: 10.1039/C5RA13492G
    [69] KWON H J, HWANG J Y, SHIN H J, et al. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries[J]. Nano Letters,2020,20(1):625-635. doi: 10.1021/acs.nanolett.9b04395
    [70] LI H H, WANG J W, WU X L, et al. A novel approach to prepare Si/C nanocomposites with yolk-shell structures for lithium ion batteries[J]. RSC Advances,2014,4(68):36218-36225. doi: 10.1039/C4RA07043G
    [71] MA J Y, TAN H, LIU H, et al. Facile and scalable synthesis of Si@void@C embedded in interconnected 3D porous carbon architecture for high performance lithium-ion batteries[J]. Particle & Particle Systems Characterization, 2021, 38(3): 288-301.
    [72] SU H P, BARRAGAN A A, GENG L X, et al. Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries[J]. Angewandte Chemie-International Edition,2017,56(36):10780-10785. doi: 10.1002/anie.201705200
    [73] ZHANG L, BLOM D A, WANG H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties[J]. Chemistry of Materials,2011,23(20):4587-4598. doi: 10.1021/cm202078t
    [74] ZHOU Z W, LIU Y T, XIE X M, et al. Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage[J]. Chemical Communications,2016,52(54):8401-8404. doi: 10.1039/C6CC03766F
    [75] HUANG H B, CHEN R P, YANG S Y, et al. High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery[J]. Synthetic Metals,2019,247:212-218. doi: 10.1016/j.synthmet.2018.12.011
    [76] MUKHERJEE R, THOMAS A V, KRISHNAMURTHY A, et al. Photothermally reduced graphene as high-power anodes for lithium-ion batteries[J]. ACS Nano,2012,6(9):7867-7878. doi: 10.1021/nn303145j
    [77] JIANG H, ZHOU X, LIU G G, et al. Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes[J]. Electrochimica Acta,2016,188:777-784. doi: 10.1016/j.electacta.2015.12.023
    [78] DENG N, LI Y, LI Q, et al. Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery[J]. Energy Storage Materials,2022,53:684-691. doi: 10.1016/j.ensm.2022.08.003
    [79] LUO Z P, XIAO Q Z, LEI G T, et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon,2016,98:373-380. doi: 10.1016/j.carbon.2015.11.031
    [80] ZHANG H X, JING S L, HU Y J, et al. A flexible free standing Si/rGO hybrid film anode for stable Li-ion batteries[J]. Journal of Power Sources,2016,307:214-219. doi: 10.1016/j.jpowsour.2015.12.107
    [81] ZHU Y A, HU J M, QIN C X, et al. Synthesis of free-standing N-doping Si/SiC/C composite nanofiber film as superior lithium-ion batteries anode[J]. Materials Letters,2022,306:130895. doi: 10.1016/j.matlet.2021.130895
    [82] TOCOGLU U, ALAF M, AKBULUT H. Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes[J]. Materials Chemistry and Physics,2020,240:10-20.
    [83] ZHAO H, YANG F, LI C, et al. Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries[J]. ChemPhysMater,2023,2(1):1-19. doi: 10.1016/j.chphma.2022.03.005
    [84] CHOI S, KIM M C, MOON S H, et al. 3D yolk-shell Si@void@CNF nanostructured electrodes with improved electrochemical performance for lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry,2018,64:344-351. doi: 10.1016/j.jiec.2018.03.035
    [85] KANG W, KIM J C, KIM D W. Waste glass microfiber filter-derived fabrication of fibrous yolk-shell structured silicon/carbon composite freestanding electrodes for lithium-ion battery anodes[J]. Journal of Power Sources,2020,468:7-14.
    [86] JIA Z, LIU W K. Analytical model on stress-regulated lithiation kinetics and fracture of Si-C yolk-shell anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2016,163(6):A940-A946. doi: 10.1149/2.0601606jes
    [87] LIU B, LUO M, WANG Z, et al. On the specific capacity and cycle stability of Si@void@C anodes: Effects of particle size and charge/discharge protocol[J]. Batteries-Basel,2022,8(10):154-168. doi: 10.3390/batteries8100154-168
    [88] LIU Z, LUO Y W, ZHOU M J, et al. Enhanced performance of yolk-shell structured Si-PPy composite as an anode for lithium ion batteries[J]. Electrochemistry,2015,83(12):1067-1070. doi: 10.5796/electrochemistry.83.1067
  • 加载中
图(43)
计量
  • 文章访问数:  970
  • HTML全文浏览量:  862
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-03-01
  • 录用日期:  2023-03-24
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回