留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向和纵向荷载下石墨烯/Al层状梁的弯曲特性

程超 颜建伟 朱兆铭 谭鑫

程超, 颜建伟, 朱兆铭, 等. 横向和纵向荷载下石墨烯/Al层状梁的弯曲特性[J]. 复合材料学报, 2023, 40(12): 6897-6909. doi: 10.13801/j.cnki.fhclxb.20230330.004
引用本文: 程超, 颜建伟, 朱兆铭, 等. 横向和纵向荷载下石墨烯/Al层状梁的弯曲特性[J]. 复合材料学报, 2023, 40(12): 6897-6909. doi: 10.13801/j.cnki.fhclxb.20230330.004
CHENG Chao, YAN Jianwei, ZHU Zhaoming, et al. Bending properties of graphene/Al layered beams under transverse and longitudinal loads[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6897-6909. doi: 10.13801/j.cnki.fhclxb.20230330.004
Citation: CHENG Chao, YAN Jianwei, ZHU Zhaoming, et al. Bending properties of graphene/Al layered beams under transverse and longitudinal loads[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6897-6909. doi: 10.13801/j.cnki.fhclxb.20230330.004

横向和纵向荷载下石墨烯/Al层状梁的弯曲特性

doi: 10.13801/j.cnki.fhclxb.20230330.004
基金项目: 国家自然科学基金(12072112); 中国博士后科学基金(2021M700306);江西省杰出青年科学基金(20202ACBL214014)
详细信息
    通讯作者:

    颜建伟,博士,教授,博士生导师,研究方向为纳系统非线性动力学 E-mail: jianwei@mail.ustc.edu.cn

  • 中图分类号: TB331

Bending properties of graphene/Al layered beams under transverse and longitudinal loads

Funds: National Natural Science Foundation of China (12072112); China Postdoctoral Science Foundation (2021M700306); Natural Science Foundation of Jiangxi Province (20202ACBL214014)
  • 摘要: 采用分子动力学(MD)方法模拟了石墨烯(GNs)/Al层状梁在横向荷载和纵向压缩下的弯曲变形,探究了层状梁弯曲特性的影响因素。从横向荷载下的弯曲结果可见,由于层间作用的影响,层状梁的弯曲刚度随着GNs层数的增加而不断降低。GNs/Al层状梁的弯曲机制并非由GNs和Al组分特性的简单相加,这使经典连续力学难以适用于高各向异性的层状材料中。在单轴纵向压缩中,GNs使细长的层状梁在塑性变形前更易发生屈曲行为。发生屈曲的临界应力σcr和临界应变εcr主要受层状梁中重复层厚度的影响,尤其在重复层厚度不足2 nm时,σcrεcr急剧降低。屈曲后的弯曲变形中,位错形核的拉-压不对称性使原子缺陷仅从受压缩的地方产生。随着GNs层数的增加,重复层间距离降低,层状梁的柔韧性随之增加。

     

  • 图  1  石墨烯(GNs)/Al层状梁模型

    Figure  1.  Model of graphene (GNs)/Al layered beam

    Gray atom is fixed atom in c-f and c-c; the two atoms before and after the two ends are fixed respectively in s-s; L—Length of GNs/Al layered beam; P—Concentrated load

    图  2  3种GNs/Al层状梁模型的小变形

    Figure  2.  Small deformation of three GNs/Al layered beam models

    图  3  GNs/Al层状梁模型中的原子应力分布

    Figure  3.  Atomic stress distribution in GNs/Al layered beam models

    图  4  悬臂梁的计算模型

    Figure  4.  Calculation model of cantilever beam

    Nx , Ny and Nz—Number of atomic layers in x, y and z direction; d0—Distance between adjacent atomic layers; a0—Lattice constant of single crystal Al; q—Uniform distributed load; b—Width of GNs/Al layered beam; h—Height of GNs/Al layered beam ; η—Length ratio of the no-load area

    图  5  纯Al梁横截面上原子的应力和位移云图

    Figure  5.  Stress and displacement nephogram of atoms in cross section of pure Al beam

    图  6  纯Al梁的弯曲刚度

    Figure  6.  Bending stiffness of pure Al beam

    图  7  纵向压缩下GNs/Al层状梁的应力-应变曲线

    Figure  7.  Stress-strain curves of the GNs/Al layered beam under longitudinal compression

    σcr—Critical stress; εcr—Critical strain; HCP—Close-packed hexagonal structure

    图  8  GNs层的波浪状褶皱

    Figure  8.  Wavy folds of the GNs layers

    t—Layer thickness

    图  9  纯Al梁的变形

    Figure  9.  Deformation of pure Al beam

    ε—Strain

    图  10  GNs/Al层状梁的结构演化

    Figure  10.  Structural evolution of GNs/Al layered beam

    图  11  多层GNs的GNs/Al层状梁的弯曲

    Figure  11.  Bending of GNs/Al layered beam with multilayer GNs

    表  1  纯Al梁的横截面尺寸与相应的弯曲刚度

    Table  1.   Cross-section size and corresponding bending stiffness of pure Al beam

    Nx=Ny9111315171921
    γ
    /%
    L1 45.30 37.21 31.61 27.51 24.37 21.89 19.88
    L2 45.18 37.09 31.49 27.38 24.25 21.77 19.76
    L3 45.09 37.01 31.40 27.30 24.16 21.68 19.67
    L4 45.02 36.93 31.33 27.23 24.09 21.61 19.61
    w
    /nm
    L1 0.318 0.237 0.183 0.146 0.119 0.098 0.083
    L2 0.337 0.251 0.194 0.154 0.126 0.104 0.087
    L3 0.354 0.264 0.204 0.162 0.132 0.109 0.092
    L4 0.370 0.275 0.213 0.169 0.137 0.114 0.095
    EB
    /10−23 N·m2
    L1 3.245 4.354 5.625 7.065 8.677 10.468 12.447
    L2 4.918 6.599 8.529 10.718 13.239 15.910 18.935
    L3 7.043 9.453 12.223 15.370 18.909 22.856 27.225
    L4 9.662 12.972 16.784 21.119 26.007 31.454 37.511
    Notes: γ—Ratio of the number of atoms on the outermost surface of the model to the total number of atoms in the model; w—Deflection; EB—Bending stiffness.
    下载: 导出CSV
  • [1] ERINGEN A C. Nonlocal polar elastic continua[J]. International Journal of Engineering Science,1972,10(1):1-16. doi: 10.1016/0020-7225(72)90070-5
    [2] ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics,1983,54(9):4703-4710. doi: 10.1063/1.332803
    [3] WU M, YUAN Q, LI H, et al. Effect of curvature-dependent surface elasticity on the flexural properties of nanowire[J]. Advances in Civil Engineering,2021,2021:1-5.
    [4] MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology,2000,11(3):139-147. doi: 10.1088/0957-4484/11/3/301
    [5] WU H A. Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod[J]. Computational Materials Science,2004,31(3):287-291. doi: 10.1016/j.commatsci.2004.03.017
    [6] QIN H S, YAN Y B, LIU H C, et al. Modified Timoshenko beam model for bending behaviors of layered materials and structures[J]. Extreme Mechanics Letters,2020,39:1-12.
    [7] PAN F, WANG G R, LIU L Q, et al. Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets[J]. Journal of the Mechanics and Physics of Solids,2019,122:340-363. doi: 10.1016/j.jmps.2018.09.019
    [8] NOROUZZADEH A, ANSARI R, DARVIZEH M. From nonlinear micromorphic to nonlinear micropolar shell theory[J]. Applied Mathematical Modelling,2021,100:689-727. doi: 10.1016/j.apm.2021.07.041
    [9] AMBARTSUMIAN S A. Micropolar theory of shells and plates[M]. Berlin: Springer, 2021.
    [10] TRAN T T, TRAN V K, PHAM Q H, et al. Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation[J]. Composite Structures,2021,264:113737. doi: 10.1016/j.compstruct.2021.113737
    [11] SAYYAD A S, GHUGAL Y M. Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory[J]. International Journal of Applied Mechanics,2020,12(1):2050007. doi: 10.1142/S1758825120500076
    [12] FUSCHI P, PISANO A A, POLIZZOTTO C. Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory[J]. International Journal of Mechanical Sciences,2019,151:661-671. doi: 10.1016/j.ijmecsci.2018.12.024
    [13] ELTAHER M A, KHATER M E, EMAM S A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams[J]. Applied Mathematical Modelling,2016,40(5-6):4109-4128. doi: 10.1016/j.apm.2015.11.026
    [14] REDDY J N. Nonlocal theories for bending, buckling and vibration of beams[J]. International Journal of Engineering Science,2007,45(2):288-307. doi: 10.1016/j.ijengsci.2007.04.004
    [15] ARASH B, WANG Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes[J]. Computational Materials Science,2012,51(1):303-313.
    [16] CIVALEK Ö, DEMIR Ç. Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory[J]. Applied Mathematical Modelling,2011,35(5):2053-2067. doi: 10.1016/j.apm.2010.11.004
    [17] SEIFOORI S, ABBASPOUR F, ZAMANI E. Molecular dynamics simulation of impact behavior in multi-walled carbon nanotubes[J]. Superlattices and Microstructures,2020,140:1-15.
    [18] LIU P, XIE J P, WANG A Q, et al. First-principles prediction of enhancing graphene/Al interface bonding strength by graphene doping strategy[J]. Applied Surface Science,2020,517:146040. doi: 10.1016/j.apsusc.2020.146040
    [19] FANG B C, SPRINGBORG M, ZHAO N Q, et al. Interfacial chemical bonding between carbon nanotube and aluminum substrate modulated by alloying elements[J]. Diamond and Related Materials,2015,59:1-6. doi: 10.1016/j.diamond.2015.08.011
    [20] HASEGAWA M, NISHIDATE K. Transfer doping of a metallic carbon nanotube and graphene on metal surfaces[J]. Physical Review B,2011,83(15):1-11.
    [21] GONG C, LEE G, SHAN B, et al. First-principles study of metal-graphene interfaces[J]. Journal of Applied Physics,2010,108(12):1-8.
    [22] VANIN M, MORTENSEN J J, KELKKANEN A K, et al. Graphene on metals: A van der Waals density functional study[J]. Physical Review B,2010,81(8):1-8.
    [23] MISHIN Y, FARKAS D, MEHL M J, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Physical Review B,1999,59(5):3393-3407. doi: 10.1103/PhysRevB.59.3393
    [24] LEE W, JANG S, KIM M J, et al. Interfacial interactions and dispersion relations in carbon-aluminium nanocomposite systems[J]. Nanotechnology,2008,19(28):1-13.
    [25] SHEN Y K, WU H A. Interlayer shear effect on multilayer graphene subjected to bending[J]. Applied Physics Letters,2012,100(10):101909.
    [26] ZHAO Y X, LIU X Y, ZHU J, et al. Unusually high flexibility of graphene-Cu nanolayered composites under bending[J]. Physical Chemistry Chemical Physics,2019,21(31):17393-17399. doi: 10.1039/C9CP02980J
    [27] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene–aluminum nanocomposites[J]. Materials Science and Engi-neering: A,2011,528(27):7933-7937. doi: 10.1016/j.msea.2011.07.043
    [28] SU Y S, LI Z, YU Y, et al. Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites[J]. Science China Materials,2018,61(1):112-124. doi: 10.1007/s40843-017-9142-2
    [29] WANG J Y, LI Z Q, FAN G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia,2012,66(8):594-597. doi: 10.1016/j.scriptamat.2012.01.012
    [30] YANG W S, ZHAO Q Q, XIN L, et al. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. Journal of Alloys and Compounds,2018,732:748-758. doi: 10.1016/j.jallcom.2017.10.283
    [31] ZHAO L, GUO Q A, LI Z, et al. Grain boundary-assisted deformation in graphene-Al nanolaminated composite micro-pillars[J]. Materials Research Letters,2018,6(1):41-48. doi: 10.1080/21663831.2017.1386241
    [32] ZHANG H P, XU C, XIAO W L, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Materials Science and Engineering: A,2016,658:8-15. doi: 10.1016/j.msea.2016.01.076
    [33] ZHU J Q, LIU X, YANG Q S. Dislocation-blocking mechanism for the strengthening and toughening of laminated graphene/Al composites[J]. Computational Materials Science,2019,160:72-81. doi: 10.1016/j.commatsci.2018.12.061
    [34] WANG X, XIAO W, WANG L G, et al. Investigation on mechanical behavior of multilayer graphene reinforced aluminum composites[J]. Physica E: Low-dimensional Systems and Nanostructures,2020,123:114172. doi: 10.1016/j.physe.2020.114172
    [35] 颜建伟, 程超, 金超奇, 等. 石墨烯增强层对石墨烯/Al复合材料不同压缩阶段的强化影响[J]. 复合材料学报, 2023, 40(6):3662-3672.

    YAN Jianwei, CHENG Chao, JIN Chaoqi, et al. Effect of graphene reinforcement layer on strengthening of grapheme/Al composites at different compression stages[J]. Acta Materiae Compositae Sinica,2023,40(6):3662-3672(in Chinese).
    [36] TJONG S C. Recent progress in the development and pro-perties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [37] 吴恒安, 倪向贵, 王宇, 等. 金属纳米棒弯曲力学行为的分子动力学模拟[J]. 物理学报, 2002, 51(7):1412-1415. doi: 10.3321/j.issn:1000-3290.2002.07.002

    WU Heng'an, NI Xianggui, WANG Yu, et al. Molecular dynamics simulation on bending behaviour of metal nanorod[J]. Acta Physica Sinica,2002,51(7):1412-1415(in Chinese). doi: 10.3321/j.issn:1000-3290.2002.07.002
    [38] 李煜冬, 傅卓佳, 汤卓超. 功能梯度碳纳米管增强复合材料板弯曲和模态的广义有限差分法[J]. 力学学报, 2022, 54(2):414-424. doi: 10.6052/0459-1879-21-439

    LI Yudong, FU Zhuojia, TANG Zhuochao. Generalized finite difference method for bending and modal analysis of functionally graded carbon nanotube-reinforced compo-site plates[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(2):414-424(in Chinese). doi: 10.6052/0459-1879-21-439
    [39] 文诗琦, 李克智, 宋强. 碳纤维上原位生长碳纳米管对C/C复合材料弯曲性能的影响[J]. 复合材料学报, 2013, 30(6):7-13. doi: 10.3969/j.issn.1000-3851.2013.06.002

    WEN Shiqi, LI Kezhi, SONG Qiang. Influence of in situ grown carbon nanotubes on carbon fiber on the flexural properties of C/C composites[J]. Acta Materiae Compositae Sinica,2013,30(6):7-13(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.002
    [40] NI W B, ZHAO J W, LIU Y H, et al. Atomic simulation of the bending deformation of a single-crystal simply supported nano-beam[J]. Advanced Materials Research, 2009, 79(1): 1185-1188.
    [41] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
    [42] DAI Z H, HOU Y A, SANCHEZ D A, et al. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials[J]. Physical Review Letters,2018,121(26):266101. doi: 10.1103/PhysRevLett.121.266101
    [43] SILVESTRE N, FARIA B, CANONGIA LOPES J N. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics[J]. Composites Science and Technology,2014,90(10):3842-3844.
    [44] WU Q, MIAO W S, ZHANG Y D, et al. Mechanical properties of nanomaterials: A review[J]. Nanotechnology Reviews,2020,9(1):259-273. doi: 10.1515/ntrev-2020-0021
    [45] SHAHABODINI A, AHMADI B. On the buckling and bending analysis of FG straight-sided quadrilateral nanoplates using a continuum mechanics-based surface elastic model[J]. Proceedings of the Institution of Mechanical Engi-neers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2022, 236(3-4): 69-86.
    [46] HASHEMIAN M, FOROUTAN S, TOGHRAIE D. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects[J]. Mechanics of Materials,2019,139:103209. doi: 10.1016/j.mechmat.2019.103209
    [47] OLSSON P A T, MELIN S, PERSSON C. Atomistic simulations of tensile and bending properties of single-crystal BCC iron nanobeams[J]. Physical Review B,2007,76(22):1-15.
    [48] WEN Y H, WANG Q, LIEW K M, et al. Compressive mechanical behavior of Au nanowires[J]. Physics Letters A,2010,374(29):2949-2952. doi: 10.1016/j.physleta.2010.05.015
    [49] ZHANG J Y, ZHANG X, LIU G, et al. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films[J]. Scripta Materialia,2010,63(1):101-104. doi: 10.1016/j.scriptamat.2010.03.024
    [50] ZHU Y X, LI Z H, HUANG M S, et al. Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins[J]. International Journal of Plasticity,2015,72:168-184. doi: 10.1016/j.ijplas.2015.05.014
    [51] PENG W X, SUN K. Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene compo-sites[J]. Mechanics of Materials,2020,141:103270. doi: 10.1016/j.mechmat.2019.103270
    [52] ARMSTRONG R W, RODRIGUEZ P. Flow stress/strain rate/grain size coupling for fcc nanopolycrystals[J]. Philosophical Magazine,2006,86(36):5787-5796. doi: 10.1080/14786430600764872
    [53] LIU X Y, WANG F C, WANG W Q, et al. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation[J]. Carbon,2016,107:680-688. doi: 10.1016/j.carbon.2016.06.071
    [54] LIU X, CAI J, LUO S N. Interfacial anti-fatigue effect in graphene-copper nanolayered composites under cyclic shear loading[J]. Physical Chemistry Chemical Physics,2018,20(11):7875-7884. doi: 10.1039/C8CP00127H
    [55] TIAN Y, DING J, HUANG X, et al. Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: Twin boundary spacing and tempera-ture effect[J]. Computational Materials Science,2020,171:109218. doi: 10.1016/j.commatsci.2019.109218
    [56] XIE G, GAO Z, YU X, et al. Tension/compression asymmetry of quasi-Static and dynamic mechanical properties in a face centered cubic Ni-W-Co ternary alloy[J]. Journal of Materials Research and Technology,2022,18:2797-2807. doi: 10.1016/j.jmrt.2022.03.127
    [57] KATIN K P, PRUDKOVSKIY V S, MASLOV M M. Molecular dynamics simulation of nickel-coated graphene bending[J]. Micro & Nano Letters,2018,13(2):160-164.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  247
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-18
  • 录用日期:  2023-03-25
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回