留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCf/SiC复合材料涡轮导向叶片研究进展

焦健 孙世杰 焦春荣 杨金华 杨瑞 刘虎

焦健, 孙世杰, 焦春荣, 等. SiCf/SiC复合材料涡轮导向叶片研究进展[J]. 复合材料学报, 2023, 40(8): 4342-4354. doi: 10.13801/j.cnki.fhclxb.20230330.003
引用本文: 焦健, 孙世杰, 焦春荣, 等. SiCf/SiC复合材料涡轮导向叶片研究进展[J]. 复合材料学报, 2023, 40(8): 4342-4354. doi: 10.13801/j.cnki.fhclxb.20230330.003
JIAO Jian, SUN Shijie, JIAO Chunrong, et al. Research progress of SiCf/SiC turbine guide vanes: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4342-4354. doi: 10.13801/j.cnki.fhclxb.20230330.003
Citation: JIAO Jian, SUN Shijie, JIAO Chunrong, et al. Research progress of SiCf/SiC turbine guide vanes: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4342-4354. doi: 10.13801/j.cnki.fhclxb.20230330.003

SiCf/SiC复合材料涡轮导向叶片研究进展

doi: 10.13801/j.cnki.fhclxb.20230330.003
详细信息
    通讯作者:

    焦健,博士,研究员,硕士生导师,研究方向为陶瓷基复合材料 E-mail: jian.jiao@biam.ac.cn

  • 中图分类号: TB332

Research progress of SiCf/SiC turbine guide vanes: A review

  • 摘要: 随着航空发动机性能进一步提升,急需发展新型轻质、耐高温、长寿命的陶瓷基复合材料导向叶片,以解决目前高温合金材料使用温度达到极限的问题。本文从导向叶片服役环境特点、材料特点、制造工艺、考核验证方法及无损检测技术等方面系统的综述了目前国内外SiCf/SiC复合材料导向叶片研究进展情况,以期为国内航空发动机领域陶瓷基复合材料导向叶片的相关研究工作提供一定的参考。

     

  • 图  1  NASA SiCf/SiC导叶叶身高压燃气热冲击考核结果[71]

    Figure  1.  NASA SiCf/SiC airfoil high pressure gas thermal shock assessment[71]

    图  2  T/L形筋元件考核

    F—Force

    Figure  2.  Mechanical test of T/L element

    图  3  开孔力学元件

    R—Radius; L—Length

    Figure  3.  Open hole mechanical plate element

    图  4  MI和CVI工艺制备的导向叶片CT结果[93]

    Figure  4.  CT images of guide blades prepared by MI and CVI processes[93]

    表  1  镍基高温合金与SiCf/SiC复合材料性能对比[32-39]

    Table  1.   Performance comparison between nickel-based superalloys and SiCf/SiC composites[32-39]

    ContentNi-base superalloySiCf/SiC
    GE MISNECMA
    CVI
    NPU
    CVI
    NCHU
    PIP
    MaterialFCC/L12Hi-NicalonNicalonCansas3200
    Fiber volume fraction/%22-244035
    Density/(g·cm3)7.9-8.52.82.522.5
    Porosity/%<21012
    Elasticity modulus/GPa206285230188.7
    Proportional limit stress/MPa167115±1320
    Tensile strength/MPa1250-1450321200222±7169
    Strain to failure/%10-150.890.30.4-0.650.22
    Flexural strength/MPa300274.9
    In plane compressive strength/MPa1190580
    Interlaminar tensile strength/MPa39.5
    Interlaminar shear strength/MPa13540
    Coefficient of thermal expansion (//)/(10−6 K−1)10-153.733
    Coefficient of thermal expansion (⊥)/(10−6 K−1)4.151.7
    Thermal conductivity (//)/(W·m−1·K−1)12-2833.819
    Thermal conductivity (⊥)/(W·m−1·K−1)24.79.5
    Service temperature limit/℃115013501350
    Notes: GE—General electric company; MI—Melt infiltration; NPU—Northwestern polytechnical university; NCHU—Nanchang Hangkong university; CVI—Chemical vapor infiltration; PIP—Polymer infiltration pyrolysis; FCC—Face center cubic.
    下载: 导出CSV

    表  2  SiCf/SiC制造工艺对比

    Table  2.   Comparison of the SiCf/SiC manufacturing technologies

    TechnologyMICVIPIP
    Advantage• Short process time
    • Low cost
    • Suitable for engineering
    • Low process temperature is
    benefit to avoid SiC fiber recession
    • High matrix purity
    • Low process temperature is benefit to avoid SiC fiber recession
    • Suitable for large components
    Disadvantage• High temperatures cause SiC
    fiber recession
    • Remains an amount of silicon
    • High porosity
    • Long process time
    • High equipment requirements
    • Fiber weaving is difficult
    • High porosity
    • Long process time
    • Fiber weaving is difficult
    下载: 导出CSV

    表  3  部分国内外SiCf/SiC材料使役性能研究汇总[64-69]

    Table  3.   Some domestic and foreign service performances of SiCf/SiC[64-69]

    NumberFiber typePreparation technologyAssessment conditionResultINST.Ref.
    1Hi-NicalonMI1200℃, air, 4000 hUltimate strength degradation is less than 10%GE, USA[64]
    Hi-NicalonMI1315℃, air, 1000 hUltimate strength degradation reaches 30%
    Hi-Nicalon SMI1315℃, air, 4000 hUltimate strength degradation is less than 10%
    2Hi-Nicalon SMIUnder tension-tension fatigue loading in combination with combustion (a burner rig) conditions,1250℃, gas velocity 0.5 Mach,125 MPaFatigue life is 8329 cyclesAir Force Institute of Technology, USA[65]
    Under tension-tension fatigue loading in combination with a laboratory air environment,
    1250℃, 125 MPa
    Fatigue life is 58 838 cycles
    3Domestic second generation
    SiC fiber
    MI1200℃, air, 100 hBending strength of the samples with and without SiC coating after oxidation were reduced by 6.9% and 36.2%, respectivelyAECC Beijing Institute of Aeronautical Materials, China[66]
    4CVI1100-1300℃, air, 300 hOxidation kinetics of SiCf/SiC composites at 1100-
    1300℃ follow parabolic law. The bending strength decreases 25% after 1300℃ oxidation
    AECC Commercial Aircraft Engine Co., Ltd[67]
    5KD-SPIP22vol%H2O+78vol%O2,
    1100-1300℃
    As the temperature rises up to
    1200℃, the fiber/matrix interphase (boron nitride) is completely dissipated.
    Shanghai Institute of Ceramics, China[68]
    6Cansas3203PIP+CVI1200℃, 0-30 timesTensile strength of the material decreases to 48.39% under 10 thermal shocks, and increases to 54.11% after 30 thermal shocks; the bending strength of the material rapidly drops to 26.06% under 10 thermal shocks, and decreases to 10.77% after 30 thermal shocksShenyang University of Aeronautics and Astronautics, Shenyang, China[69]
    7Cansas3200CVIAt 500℃, 800℃ and 1 000℃
    with stresses of 100 MPa to 160 MPa in air
    Rupture time decreases with the increasing stresses at constant temperatures, embrittlement takes place at 800℃.Northwestern Polytechnical University, China[40]
    下载: 导出CSV

    表  4  国外陶瓷基复合材料导向叶片考核试验汇总

    Table  4.   Summary of foreign ceramic matrix composite guide vane test

    NumberTest typeORGRef.
    1Bending rig testIHI Corporation[86]
    2Impact testIHI Corporation[87]
    3Burner rig testNASA[71]
    IHI Corporation[23]
    United Technologies Research Center[88]
    4Thermal shock testIHI Corporation[88]
    5Engine testIHI Corporation[88]
    GE Corporation[88]
    Notes: ORG—Organization; NASA—National aeronautics and space administration; GE—General electric company; IHI—Ishikawajima-Harima heavy industries.
    下载: 导出CSV
  • [1] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9):4179-4186. doi: 10.13801/j.cnki.fhclxb.20220525.001

    XING Liying, LI Yafeng, CHEN Xiangbao. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica,2022,39(9):4179-4186(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220525.001
    [2] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2):1-10. doi: 10.11868/j.issn.1001-4381.2018.000979

    LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering,2019,47(2):1-10(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000979
    [3] 杨金华, 董禹飞, 杨瑞, 等. 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力, 2021(5):56-58.

    YANG Jinhua, DONG Yufei, YANG Rui, et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power,2021(5):56-58(in Chinese).
    [4] 何爱杰, 李世峰, 李万福, 等. 世界航空发动机高压涡轮导向器研究综述[J]. 航空科学技术, 2013(3):15-17. doi: 10.3969/j.issn.1007-5453.2013.03.004

    HE Aijie, LI Shifeng, LI Wanfu, et al. Research review of high-pressure turbine vane in aero-engine[J]. Aeronauti-cal Science & Technology,2013(3):15-17(in Chinese). doi: 10.3969/j.issn.1007-5453.2013.03.004
    [5] WANG S, ZHANG Z. Failure mechanism of turbine guide vane and oxide composition analysis on the surface of failure vane cracks[J]. Engineering Failure Analysis,2020,117:104763. doi: 10.1016/j.engfailanal.2020.104763
    [6] 孔祥灿, 张子卿, 朱俊强, 等. 航空发动机气冷涡轮叶片冷却结构研究进展[J]. 推进技术, 2022, 43(5):1-23. doi: 10.13675/j.cnki.tjjs.200632

    KONG Xiangcan, ZHANG Ziqing, ZHU Junqiang, et al. Research progress on cooling structure of aeroengine air-cooled turbine blade[J]. Journal of Propulsion Technology,2022,43(5):1-23(in Chinese). doi: 10.13675/j.cnki.tjjs.200632
    [7] CORMAN G S, LUTHRA K L. Development history of GE's prepreg melt infiltrated ceramic matrix composites material and applications[J]. Comprehensive Composite Materials II,2018,5:325-338.
    [8] 陈辉煌, 巩龙东, 申秀丽. 金属骨架陶瓷基复合材料涡轮导叶研究进展[J]. 航空发动机, 2014, 40(1):68-73. doi: 10.13477/j.cnki.aeroengine.2014.01.012

    CHEN Huihuang, GONG Longdong, SHEN Xiuli. Research progress on ceramic matrix composites turbine vane with metal core[J]. Aeroengine,2014,40(1):68-73(in Chinese). doi: 10.13477/j.cnki.aeroengine.2014.01.012
    [9] 齐哲, 郎旭东, 赵春玲, 等. SiC/SiC 复合材料失效行为研究进展[J]. 航空材料学报, 2021, 41(3):25-35. doi: 10.11868/j.issn.1005-5053.2021.000052

    QI Zhe, LANG Xudong, ZHAO Chunling, et al. Research progress on the failure behavior of SiC/SiC composites[J]. Journal of Aeronautical Materials,2021,41(3):25-35(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000052
    [10] 刘虎, 杨金华, 周怡然, 等. 国外航空发动机用SiCf/SiC 复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11):1-12. doi: 10.11868/j.issn.1001-4381.2018.000503

    LIU Hu, YANG Jinhua, ZHOU Yiran, et al. Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines[J]. Journal of Materials Engineering,2018,46(11):1-12(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000503
    [11] 吕晓旭, 齐哲, 赵文青, 等. SiCf/SiC 复合材料氮化硼(BN)界面层及其复合界面层研究进展[J]. 航空材料学报, 2019, 39(5):13-23. doi: 10.11868/j.issn.1005-5053.2019.000101

    LYU Xiaoxu, QI Zhe, ZHAO Wenqing, et al. Research progress of BN interphases and its multilayers in SiCf/SiC composites[J]. Journal of Aeronautical Materials,2019,39(5):13-23(in Chinese). doi: 10.11868/j.issn.1005-5053.2019.000101
    [12] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442. doi: 10.13801/j.cnki.fhclxb.20210629.002

    LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210629.002
    [13] 王瀚艺, 卢嘉铮, 贺强. 航空发动机SiCf/SiC复合材料与环境障涂层系统及制备技术研究进展[J]. 复合材料科学与工程, 2022(9):109-123.

    WANG Hanyi, LU Jiazheng, HE Qiang. Research progress on SiCf/SiC composite and environmental barrier coating system and preparation technology for aeroengine[J]. Composites Science and Engineering,2022(9):109-123(in Chinese).
    [14] KATOH Y, SNEAD L L, HENAGERC H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials,2014,455(1-3):387-397. doi: 10.1016/j.jnucmat.2014.06.003
    [15] WANG P, LIU F, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology,2019,35:2743-2750.
    [16] 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10):1-5. doi: 10.11868/j.issn.1001-4381.2017.100001

    LIU Daxiang. One generation of new material, one generation of new type engine: Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering,2017,45(10):1-5(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.100001
    [17] 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43(2):1-19.

    DU Kun, CHEN Qihao, MENG Xianlong, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology,2022,43(2):1-19(in Chinese).
    [18] 余竹焕, 刘蓓蕾, 王盼航, 等. 热腐蚀对高温合金力学性能的影响以及防护措施的研究进展[J]. 铸造, 2019, 68(6):550-557. doi: 10.3969/j.issn.1001-4977.2019.06.002

    YU Zhuhuan, LIU Beilei, WANG Panhang, et al. Research progress on the influence of hot corrosion on mechanical properties of superalloys and protective measures[J]. Foundry,2019,68(6):550-557(in Chinese). doi: 10.3969/j.issn.1001-4977.2019.06.002
    [19] 宋迎东, 凌晨, 张磊成, 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展[J]. 南京航空航天大学学报, 2022, 54(5):771-788. doi: 10.16356/j.1005-2615.2022.05.004

    SONG Yingdong, LING Chen, ZHANG Leicheng, et al. Research progress on hot corrosion-fatigue of aero-engine and gas turbine hot-section components[J]. Journal of Nanjing University of Aeronautics & Astronautics,2022,54(5):771-788(in Chinese). doi: 10.16356/j.1005-2615.2022.05.004
    [20] 徐鹤, 汪煜, 刘德林, 等. 粉末高温合金FGH4095和FGH4096的抗高温氧化性能[J]. 材料工程, 2023, 51(4): 122-131.

    XU He, WANG Yu, LIU Delin, et al. High temperature oxidation resistance of PM superalloys FGH4095 and FGH4096[J]. Journal of Materials Engineering, 2023, 51(4): 122-131(in Chinese).
    [21] NASRIN A N, NIRANJAN P, NA N, et al. Oxidation behaviour of SiCf/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society,2016,36(14):3293-3302. doi: 10.1016/j.jeurceramsoc.2016.05.051
    [22] 钱惠华, 李海, 程滔, 等. 涡轮导向叶片热疲劳分析[J]. 航空动力学报, 2003, 18(2):186-190. doi: 10.3969/j.issn.1000-8055.2003.02.005

    QIAN Huihua, LI Hai, CHENG Tao, et al. Thermal fatigue analysis to nozzle guide vanes[J]. Journal of Aerospace Power,2003,18(2):186-190(in Chinese). doi: 10.3969/j.issn.1000-8055.2003.02.005
    [23] VENKAT V, JUN S, DAVID J, et al. Ceramic matrix compo-site turbine vanes for gas turbine engines[C]//ASME Turbo Expo 2005: Power for Land, Sea and Air. Nevada: The American Society of Mechanical Engineers, 2005: 1-5.
    [24] 柏汉松, 曹航, 廖连芳, 等. 联装涡轮导向叶片强度仿真研究[J]. 航空发动机, 2009, 35(3):29-31. doi: 10.3969/j.issn.1672-3147.2009.03.009

    BAI Hansong, CAO Hang, LIAO Lianfang, et al. Simulation of turbine cluster guide vanes strength[J]. Aeroengine,2009,35(3):29-31(in Chinese). doi: 10.3969/j.issn.1672-3147.2009.03.009
    [25] 刘雨菲, 崔秀芳, 房永超, 等. 航空发动机冲蚀损伤及防护涂层研究进展[J]. 中国表面工程, 2022, 35(3):31-47.

    LIU Yufei, CUI Xiufang, FANG Yongchao, et al. Research progress on erosion damage and protective coating for aircraft engine[J]. China Surface Engineering,2022,35(3):31-47(in Chinese).
    [26] ZHANG B, YU Y, GUO L, et al. Microstructure evolution of CMAS glass below melting temperature and its potential influence on thermal barrier coatings[J]. Ceramics International,2022,48:32877-32885. doi: 10.1016/j.ceramint.2022.07.215
    [27] CHEN X, LONG Y, WANG Y, et al. Large eddy simulation of film cooling from cylindrical holes partially blocked by CaO-MgO-Al2O3-SiO2[J]. International Communications in Heat and Mass Transfer,2021,129:105754. doi: 10.1016/j.icheatmasstransfer.2021.105754
    [28] CHEN X, LONG Y, WANG Y, et al. Effect of particle deposition on film cooling from fan-shaped holes[J]. International Journal of Heat and Mass Transfer,2021,181:122028. doi: 10.1016/j.ijheatmasstransfer.2021.122028
    [29] 胡英琦. 粒子特性对涡轮叶片表面沉积的影响研究[D]. 天津: 中国民航大学, 2020.

    HU Yingqi. Study on the effect of particle characteristics on the surface deposition of turbine blades[D]. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [30] MORSCHER G N. Tensile creep of melt-infiltrated SiC/SiC composites with unbalanced Sylramic-iBN fiber architectures[J]. International Journal of Applied Ceramic Technology,2011,8(2):239-250. doi: 10.1111/j.1744-7402.2010.02524.x
    [31] JUSTINE D, EDUARDO S, NASRIN A N. Fracture behaviour of SiCf/SiC ceramic matrix composite at room tempera-ture[J]. Journal of the European Ceramic Society,2022,42:3156-3167. doi: 10.1016/j.jeurceramsoc.2022.01.060
    [32] 干梦迪, 种晓宇, 冯晶. 航空航天高温结构材料研究现状及展望[J]. 昆明理工大学学报( 自然科学版), 2021, 46(6):24-36.

    GAN Mengdi, ZHONG Xiaoyu, FENG Jing. Research status and prospects of aerospace high-temperature structural materials[J]. Journal of Kunming University of Science and Technology (Natural Sciences),2021,46(6):24-36(in Chinese).
    [33] DICARLO J A, YUN H M, MORSCHER G N, et al. Handbook of ceramic composites: SiCf/SiC composites for 1200℃ and above[M]. BANSAL N P. Boston: Kluwer Academic Publishers, 2004: 77-98.
    [34] CORMAN G S, LUTHRA K L. Handbook of ceramic compo-sites: Silicon melt infiltrated ceramic composites (HiPerCompTM)[M]. BANSAL N P. Boston: Kluwer Academic Publishers, 2004: 99-116.
    [35] 任海水, 熊华平, 吴欣, 等. 钛铝系合金与镍基高温合金异种连接技术研究进展[J]. 机械工程学报, 2017, 53(4):1-10. doi: 10.3901/JME.2017.04.001

    REN Haishui, XIONG Huaping, WU Xin, et al. Research advances on the dissimilar joining of titanium aluminides and nickel-based superalloys[J]. Journal of Mechanical Engineering,2017,53(4):1-10(in Chinese). doi: 10.3901/JME.2017.04.001
    [36] 张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9):1077-1094. doi: 10.11900/0412.1961.2019.00122

    ZHANG Jian, WANG Li, WANG Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinca,2019,55(9):1077-1094(in Chinese). doi: 10.11900/0412.1961.2019.00122
    [37] 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1):464-471.

    ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica,2023,40(1):464-471(in Chinese).
    [38] 马岚波. 镍基高温合金真空低压铸造工艺基础研究[D]. 沈阳: 沈阳铸造研究所, 2021.

    MA Lanbo. The fundamental research of vacuum-assisted low pressure casting process for nickel-based superallys[D]. Shenyang: China Academy of Machinery Science and Technology, 2021(in Chinese).
    [39] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiCf/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885. doi: 10.13801/j.cnki.fhclxb.20181018.001

    HU Xiao'an, ZHANG Yu, YANG Haitang, et al. Tensile and bending damage mechanism of 3D braided SiCf/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1879-1885(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181018.001
    [40] 刘虎, 杨金华, 陈子木, 等. 熔融渗硅工艺制备的SiCf/SiC复合材料微观结构与性能[J]. 宇航材料工艺, 2020(6):48-54.

    LIU Hu, YANG Jinhua, CHEN Zimu, et al. Microstructure and properties of SiCf/SiC composite fabricated by melt infiltration process[J]. Aerospace Materials & Technology,2020(6):48-54(in Chinese).
    [41] 袁琼, 邱海鹏, 谢巍杰, 等. 三维六向编织SiCf/SiC 复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12):81-89.

    YUAN Qiong, QIU Haipeng, XIE Weijie, et al. Mechanical properties and damage mechanism of three-dimensional six-directional braided SiCf/SiC composites[J]. Journal of Textile Research,2021,42(12):81-89(in Chinese).
    [42] 胡建宝, 杨金山, 张翔宇, 等. 高致密反应烧结SiCf/SiC复合材料的微观结构与性能[J]. 航空制造技术, 2018, 61(14):16-21.

    HU Jianbao, YANG Jinshan, ZHANG Xiangyu, et al. Microstructure and properties of melt-infiltrated SiCf/SiC ceramic matrix composite[J]. Aeronautical Manufacturing Technology,2018,61(14):16-21(in Chinese).
    [43] MORSCHER G N, PUJAR V. Creep and stress-strain behavior after creep from SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society,2006,89(5):1652-1658. doi: 10.1111/j.1551-2916.2006.00939.x
    [44] APPLEBY M P, ZHU D, MORSCHER G N. Mechanical pro-perties and real-time damage evaluations of environmental barrier coated SiCf/SiC CMCs subjected to tensile loading under thermal gradients[J]. Surface & Coatings Technology,2015,284:318-326.
    [45] American Society for Testing and Materials. Standard test method for creep and creep rupture of continuous fiber-reinforced advanced ceramics under tensile loading at elevated temperatures: ASTM C1337-17[S]. West Conshohocken: ASTM International, 2017.
    [46] American Society for Testing and Materials. Standard test method for flexural properties of continuous fiber-reinforced advanced ceramic composites: ASTM C1341-13[S]. West Conshohocken: ASTM international, 2023.
    [47] American Society for Testing and Materials. Standard test method for monotonic tensile strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at elevated tempera-tures: ASTM C1359-13[S]. West Conshohocken: ASTM International, 2013.
    [48] LUO Z, ZHOU X, YU J. Mechanical properties of SiCf/SiC composites by PIP process with a new precursor at elevated temperature[J]. Materials Science & Engineering A,2014,607:155-161.
    [49] 荆开开, 管皞阳, 朱思雨, 等. Cansas-II SiCf/SiC复合材料的高温拉伸蠕变行为[J]. 无机材料学报, 2023, 38(2): 177-183.

    JING Kaikai, GUAN Haoyang, ZHU Siyu, et al. Tensile creep behavior of Cansas-II SiCf/SiC composites at high temperatures[J]. Journal of Inorganic Materials, 2023, 38(2): 177-183(in Chinese).
    [50] ROSSO M. Ceramic and metal matrix composites: Routes and properties[J]. Journal of Materials Processing Technology,2006,175(13):364-375.
    [51] ANTHONY C, MICHAEL V. Ceramic matrix composite vane subelement fabrication[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea and Air. Vienna: The American Society of Mechanical Engineers, 2004: 1-7.
    [52] LIU X C, GUO X J, XU Y L, et al. Cyclic thermal shock damage behavior in CVI SiCf/SiC high-pressure turbine twin guide vanes[J]. Materials,2021,14:1-13.
    [53] JIA Y, YU G, MENG W, et al. Tension-tension fatigue behavior and residual strength evolution of SiC/(PyC/SiC)2/SiC minicomposites prepared by CVI+MI and CVI+PIP processes[J]. Ceramics International,2021,47:28178-28186. doi: 10.1016/j.ceramint.2021.06.209
    [54] 焦健, 齐哲, 吕晓旭, 等. 航空发动机用陶瓷基复合材料及制造技术[J]. 航空动力, 2019(5):17-21.

    JIAO Jian, QI Zhe, LYU Xiaoxu, et al. The manufacture processing of SiCf/SiC composite materials and products for aero engine[J]. Aerospace Power,2019(5):17-21(in Chinese).
    [55] 姜卓钰, 赵春玲, 束小文, 等. 进给速度对MI工艺制备SiCf/SiC复合材料加工损伤的影响[J]. 宇航材料工艺, 2022(4):66-70. doi: 10.12044/j.issn.1007-2330.2022.04.012

    JIANG Zhuoyu, ZHAO Chunling, SHU Xiaowen, et al. Effect of feed rate on machining damage of SiCf/SiC composites by MI process[J]. Aerospace Materials & Technology,2022(4):66-70(in Chinese). doi: 10.12044/j.issn.1007-2330.2022.04.012
    [56] 陈明伟, 谢巍杰, 邱海鹏. 连续碳化硅纤维增强碳化硅陶瓷基复合材料研究进展[J]. 现代技术陶瓷, 2016, 37(6):393-402.

    CHEN Mingwei, XIE Weijie, QIU Haipeng. Recent progress in continuous SiC fiber reinforced SiC ceramic matrix composites[J]. Advanced Ceramics,2016,37(6):393-402(in Chinese).
    [57] TEJERO M D, BENNETT C, HUSSAIN T. A review on envi-ronmental barrier coatings: History, current state of the art and future developments[J]. Journal of the European Ceramic Society,2021,41:1747-1768. doi: 10.1016/j.jeurceramsoc.2020.10.057
    [58] LEE K N, VAN R M. Environmental barrier coatings enhance performance of SiCf/SiC ceramic matrix compo-sites[J]. American Ceramic Society Bulletin,2019,98:46-53.
    [59] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10):1-8. doi: 10.11868/j.issn.1001-4381.2018.000230

    LIU Qiaomu, HUANG Shunzhou, HE Aijie. Research progress in environmental barrier coatings of SiC ceramic matrix composites[J]. Journal of Materials Engineering,2018,46(10):1-8(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000230
    [60] 魏福双, 刘勇, 张晓东, 等. 高熵陶瓷的制备及在热/环境障涂层中的应用现状[J]. 航空制造技术, 2021, 64(20):92-101. doi: 10.16080/j.issn1671-833x.2021.20.092

    WEI Fushuang, LIU Yong, ZHANG Xiaodong, et al. Preparation of high-entropy ceramics and their application status in thermal/environmental barrier coatings[J]. Aeronauti-cal Manufacturing Technology,2021,64(20):92-101(in Chinese). doi: 10.16080/j.issn1671-833x.2021.20.092
    [61] DONG Y, REN K, LU Y, et al. High-entropy environmental barrier coating for the ceramic matrix composites[J]. Journal of the European Ceramic Society,2019,39(7):2574-2579. doi: 10.1016/j.jeurceramsoc.2019.02.022
    [62] FAN D, ZHONG X, ZHANG Z, et al. Interaction of high-entropy rare-earth monosilicate environmental barrier coatings subjected to corrosion by calcium-magnesium-alumino-silicate melts[J]. Corrosion Science,2022,207:110564. doi: 10.1016/j.corsci.2022.110564
    [63] GUO X, ZHANG Y, LI T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: A potential environmental barrier coating material[J]. Journal of the European Ceramic Society,2022,42(8):3570-3578. doi: 10.1016/j.jeurceramsoc.2022.03.006
    [64] GREGORY C, RAM U, SHATIL S, et al. General electric company: Selected applications of ceramics and composite materials[M]. Switzerland: Springer International Publishing, 2016: 59-91.
    [65] TED T, SHANKAR M, LARRY P, et al. Simultaneous fatigue and combustion exposure of a SiCf/SiC ceramic matrix composite[J]. Journal of Composite Materials,2010,44(25):2991-3016. doi: 10.1177/0021998310373519
    [66] 刘虎, 齐哲, 艾莹珺, 等. SiC涂层对熔渗SiC/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21):1-5.

    LIU Hu, QI Zhe, AI Yingjun, et al. Effect of SiC coating on high-temperature service performance of SiCf/SiC compo-site prepared via melt infiltration process[J]. Materials Reports,2022,36(21):1-5(in Chinese).
    [67] 洪智亮, 张巧君, 李开元, 等. SiCf/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5):144-150. doi: 10.11868/j.issn.1001-4381.2020.001169

    HONG Zhiliang, ZHANG Qiaojun, LI Kaiyuan, et al. Oxidation behavior of SiCf/SiC composites in air at high temperature[J]. Journal of Materials Engineering,2021,49(5):144-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.001169
    [68] GUO F, CHEN X, CHENG G, et al. Microstructural and mechanical evolution of SiCf/SiC composites in wet oxygen atmosphere above 1000℃[J]. Ceramics International,2022,48:8473-8480. doi: 10.1016/j.ceramint.2021.12.057
    [69] 段宏宇, 王贺权, 张佳平, 等. 不同热震工况下2.5D编织SiCf/SiC陶瓷基复合材料力学性能及损伤[J]. 复合材料学报, 2023, 40(7): 4186-4196.

    DUAN Hongyu, WANG Hequan, ZHANG Jiaping, et al. Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions[J]. Acta Materae Compositae Sinica, 2023, 40(7): 4186-4196(in Chinese).
    [70] SHEN X L, QIAO Y F, DONG S J, et al. Thermal load test method and numerical calculation for ceramic matrix composite turbine guide vane[J]. Applied Composite Materials,2019(26):553-573.
    [71] MICHAEL V, ANTHONY C. Ceramic matrix composite vane subelement testing in a gas turbine environment[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea and Air. Vienna: The American Society of Mechanical Engineers, 2004: 1-7.
    [72] KANG N L, BRYAN J H, BERNADETTE J P, et al. Manufacturing process development and rig validation of slurry environmental barrier coatings for SiC ceramic and SiC composite sub-components[J]. Coatings,2022,12:1635. doi: 10.3390/coatings12111635
    [73] HAYAO S, YUSUKE U, MASAHARU A, et al. Validation of fracture prediction model to design CMC turbine vane[C]//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Phoenix: The American Society of Mechanical Engineers, 2019: 1-8.
    [74] CRAIG S, MICHAEL P, RAMAKRISHNA B, et al. The effects of cooling holes on SiCf/SiC CMC tensile strength[C]//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Virtual Online: The American Society of Mechanical Engineers, 2020: 1-5.
    [75] ZHANG X H, GAO H S, WEN Z X, et al. Tension-tension fatigue behaviour of 3D braided SiCf/SiC composite with film cooling holes at 1350℃ in air[J]. Ceramics International,2020,46:7703-7710. doi: 10.1016/j.ceramint.2019.11.273
    [76] ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiCf/SiC composites at 1350℃ in air[J]. Ceramics International,2020,46:7982-7990. doi: 10.1016/j.ceramint.2019.12.020
    [77] 李世峰, 黄康, 马护生, 等. 航空发动机涡轮叶片气膜冷却孔设计与制备技术研究进展[J]. 热能动力工程, 2022, 37(9):1-11. doi: 10.16146/j.cnki.rndlgc.2022.09.001

    LI Shifeng, HUANG Kang, MA Husheng, et al. Research progress on design and manufacture technologies of film cooling hole for aeroengine turbine blade[J]. Journal of Engineering for Thermal Energy and Power,2022,37(9):1-11(in Chinese). doi: 10.16146/j.cnki.rndlgc.2022.09.001
    [78] 李任静, 李雪英, 郭欣欣, 等. 燃气涡轮高效冷却技术及设计方法发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(4):794-801.

    LI Renjing, LI Xueying, GUO Xinxin, et al. Development trends in high-efficiency gas turbine cooling methods[J]. Journal of Tsinghua University (Science and Technology),2022,62(4):794-801(in Chinese).
    [79] 谢刚. 航空发动机涡轮叶片综合冷效的模化理论与数值研究[D]. 西安: 西北工业大学, 2018.

    XIE Gang. Analogy principle for overall cooling effectiveness between engine and laboratory condition and numerical validation[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [80] 莫唯书. 涡轮导向叶片综合冷却效果和冷气流阻特性研究[D]. 沈阳: 沈阳航空航天大学, 2018.

    MO Weishu. Investigation on integrated cooling performance and flow resistance characteristics of vane[D]. Shenyang: Shenyang Aerospace University, 2018(in Chinese).
    [81] 何爱杰, 王俊才. 某航空发动机高压涡轮导向器结构设计[J]. 燃气涡轮试验与研究, 1996(2):32-35.

    HE Aijie, WANG Juncai. Structure design of high pressure turbine guide for an aero-engine[J]. Gas Turbine Experiment and Research,1996(2):32-35(in Chinese).
    [82] 邓磊, 刘强军, 谢强. 航空发动机高压涡轮导向叶片定位分析[J]. 中国科技纵横, 2020(10):107-109.

    DENG Lei, LIU Qiangjun, XIE Qiang. Positioning analysis of high pressure turbine guide blades in aeroengines[J]. China Science & Technology Overview,2020(10):107-109(in Chinese).
    [83] 郭洪宝, 王波, 甄文强, 等. 2D-C/SiC复合材料开孔件拉伸强度有限元计算[J]. 复合材料学报, 2014, 31(2):448-455.

    GUO Hongbao, WANG Bo, ZHEN Wenqiang, et al. FEM calculation about tensile strength of 2D-C/SiC composites with circular holes[J]. Acta Materiae Compositae Sinica,2014,31(2):448-455(in Chinese).
    [84] LI X, CHEN X, CHEN J, et al. Bearing behaviors and failure mechanisms of 2D C/SiC plate with an open hole[J]. Ceramics International,2021,47:1407-1413. doi: 10.1016/j.ceramint.2020.08.264
    [85] 刘海龙. SiCf/SiC陶瓷基复合材料力学性能与失效机理研究[D]. 上海: 上海交通大学, 2020.

    LIU Hailong. Mechanical properties and failure mecha-nism of ceramic matrix SiCf/SiC composites[D]. Shanghai: Shanghai Jiao Tong University, 2020(in Chinese).
    [86] FUMIAKI W, TAKESHI N, YOUSUKE M. Design and testing for ceramic matrix composite turbine vane[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte: ASME, 2017: 1-8.
    [87] KENRO O, FUMIAKI W. Impact test for the leading edge of CMC vane based on actual aircraft engine field data[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo: The American Society of Mechanical Engineers, 2018: 1-6.
    [88] STEIBEL J. Ceramic matrix composites taking flight at GE aviation[J]. American Ceramic Society Bulletin,2019,98(3):30-33.
    [89] 梅辉, 张鼎, 夏俊超, 等. 浅谈陶瓷基复合材料无损检测方法及其进展[J]. 航空制造技术, 2017(5):24-30. doi: 10.16080/j.issn1671-833x.2017.05.024

    MEI Hui, ZHANG Ding, XIA Junchao, et al. Brief introduction on the method and progress of nondestructive testing for ceramic matrix composites[J]. Aeronautical Manufacturing Technology,2017(5):24-30(in Chinese). doi: 10.16080/j.issn1671-833x.2017.05.024
    [90] 熊瑛, 刘海强, 杜本莉, 等. 微焦点CT在陶瓷基复合材料上的检测应用[J]. 航空制造技术, 2018, 61(19):58-63. doi: 10.16080/j.issn1671-833x.2018.19.058

    XIONG Ying, LIU Haiqiang, DU Benli, et al. Application of micro-focus CT on inspection of ceramic matrix compo-sites[J]. Aeronautical Manufacturing Technology,2018,61(19):58-63(in Chinese). doi: 10.16080/j.issn1671-833x.2018.19.058
    [91] WANG Y, WEBB J E, SINGH R N, et al. Evaluation of thermal shock damage in 2D woven nicalon-Al2O3 compo-site by NDE techniques[C]//Don B. 22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Westerville: Wiley Online Library, 2008: 607-614.
    [92] 李璇. GE在CMC部件生产中使用的缺陷检测方法[J]. 航空维修与工程, 2016(6):27.

    LI Xuan. GE advances ceramic matrix composites use[J]. Aviation Maintenance & Engineering,2016(6):27(in Chinese).
    [93] HALBIG M C, JASKOWIAK M H, KISER J D, et al. Evaluation of ceramic matrix composite technology for aircraft turbine engine applications[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics. Dallas: Curran Associates, Inc., 2013: 1-13.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  995
  • HTML全文浏览量:  558
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-03-03
  • 录用日期:  2023-03-18
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回