留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为

陈建稳 马俊杰 赵兵 陈务军

陈建稳, 马俊杰, 赵兵, 等. 双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为[J]. 复合材料学报, 2023, 40(12): 6922-6933. doi: 10.13801/j.cnki.fhclxb.20230328.002
引用本文: 陈建稳, 马俊杰, 赵兵, 等. 双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为[J]. 复合材料学报, 2023, 40(12): 6922-6933. doi: 10.13801/j.cnki.fhclxb.20230328.002
CHEN Jianwen, MA Junjie, ZHAO Bing, et al. Trapezoidal tearing propagation mechanisms of biaxial-warp-knitted fabric composites and tensile-shear coupling behaviors involved[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6922-6933. doi: 10.13801/j.cnki.fhclxb.20230328.002
Citation: CHEN Jianwen, MA Junjie, ZHAO Bing, et al. Trapezoidal tearing propagation mechanisms of biaxial-warp-knitted fabric composites and tensile-shear coupling behaviors involved[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6922-6933. doi: 10.13801/j.cnki.fhclxb.20230328.002

双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为

doi: 10.13801/j.cnki.fhclxb.20230328.002
基金项目: 国家自然科学基金项目(51608270);江苏省基础研究计划(自然科学基金)资助项目(BK20191290);中央高校基本科研业务费专项资金资助(30920021143);中国博士后科学基金资助项目(2017T100371)
详细信息
    通讯作者:

    陈建稳,博士,副教授,硕士生导师,研究方向为轻型空间结构、薄膜结构 E-mail: Jianwench@yeah.net

  • 中图分类号: TB332;TS186.1

Trapezoidal tearing propagation mechanisms of biaxial-warp-knitted fabric composites and tensile-shear coupling behaviors involved

Funds: National Natural Science Foundation of China (51608270); Fundamental Research Program of Jiangsu Province (BK20191290); Fundamental Research Funds for the Central Universities (30920021143); China Postdoctoral Science Foundation (2017T100371)
  • 摘要: 针对经编织物类膜材,考虑纱线方向性及其细观力学结构,进行了系列纱线偏转(梯度15°)及裂缝参数下梯形撕裂试验及数值研究,探讨了撕裂强度及力学行为受参数影响规律,论证了裂纹扩展机制及其涉及的拉剪耦合行为特征。结果表明:裂缝扩展与主纱应力三角区及X形剪应力区的衍变存在显著关联,并据此可界定撕裂历程中各典型阶段。经纬纱间的协同变形及材料的拉剪耦合作用是材料撕裂性能表现出纱线方向依赖性的主要诱因,且随偏角趋于45°两因素均呈现出规律性变化,进而造成裂纹两向杂糅延展及撕裂抗力的“山脊”式变化规律的呈现。所得结论可为相关织物膜材的损伤分析及膜结构安全性评估提供有益参考。

     

  • 图  1  聚偏氟乙烯 (PVDF) 织物膜材细观结构示意图(a)与SEM图像(b)

    Figure  1.  Detailed structure (a) and SEM cross-sectional image (b) of polyvinylidene fluoride (PVDF) fabric material

    图  2  PVDF膜材偏轴撕裂试样尺寸图

    Figure  2.  Dimension of PVDF fabric specimen used in trapezoidal off-axis tearing

    θ—Off-axis angle

    图  3  PVDF膜材纱线应力-应变关系模型

    Figure  3.  Stress-strain relationship model for yarns in PVDF fabric

    图  4  模型边界条件

    Figure  4.  Boundary conditions of the model

    图  5  PVDF膜材典型梯形偏轴撕裂历程

    Figure  5.  Typical trapezoidal off-axis tearing process of PVDF fabric

    图  6  PVDF膜材典型偏轴角15° (a) 与30° (b) 时数值撕裂历程

    Figure  6.  Numerical tearing process of PVDF fabric at typical off-axis angles of 15° (a) and 30° (b)

    A—Tear oblique triangle; B—Membrane of fold

    图  7  PVDF膜材各偏轴角下撕裂强力-位移曲线试验与数值结果对比

    Figure  7.  Comparison of experimental and numerical results of tearing strength-displacement curves for PVDF fabric at different off-axis angles

    RSDx°—Relative standard deviation with off-axis angle of x°

    图  8  偏轴角15° (a)、30° (b)及45° (c)下PVDF膜材数值模型Mises应力与剪应力云图

    Figure  8.  Mises stress and shear stress contours for models of PVDF fabric at typical off-axis angles of 15° (a), 30° (b) and 45° (c)

    图  9  PVDF膜材数值模型梯形撕裂历程剪应力4个典型特征段

    Figure  9.  Four typical trapezoidal tearing stages of the model of PVDF fabric according to their shear stress distribution

    图  10  PVDF膜材典型梯形撕裂历程应力云图

    Figure  10.  Stress contours of the typical trapezoidal tearing process for PVDF fabric

    图  11  不同偏轴角下PVDF膜材数值模型撕裂强力(a)及主纱剪切力(b)随位移演变曲线(15 mm)

    Figure  11.  Tearing strength-displacement (a) and shear force-displacement curves (b) of the 15 mm model of PVDF fabric with different off-axis angles

    图  12  撕裂临界时PVDF膜材数值模型切缝邻域经纬纱线剪应力

    Figure  12.  Shear stress of warp and weft yarns in the vicinity of the crack in the model of PVDF fabric at the time of tearing

    图  13  各偏角下PVDF膜材数值模型撕裂抗力与剪切力

    Figure  13.  Tearing strength and shear force for models of PVDF fabric at different off-axis angles

    图  14  不同切缝长度下PVDF膜材数值模型撕裂抗力 (a) 与剪切力 (b) 对比

    Figure  14.  Comparison of tearing strength (a) and shear force (b) for models of PVDF fabric with different crack lengths

    图  15  不同切缝长度下PVDF膜材数值模型临撕裂时切缝邻域应力

    Figure  15.  Stress in the vicinity of the crack at the time of tearing in the model of PVDF fabric with different crack lengths

    图  16  系列偏角下PVDF膜材数值模型经纬纱裂缝扩展期的应力三角区拉伸 (a) 及剪切 (b) 承载力

    Figure  16.  Tensile (a) and shear (b) force of warp and weft yarns in the delta zone of the model of PVDF fabric at the tearing extension stage with different off-axis angles

    表  1  PVDF膜材纱线力学参数

    Table  1.   Mechanical parameters for yarns in PVDF fabric

    YarnStrain/%Modulus/MPa
    εIεIIεIIIEIEIIEIII
    Warp 0.02 9.00 18.00 4909.32 971.20 3196.41
    Weft 3.00 15.50 27.00 3246.33 851.52 2477.14
    Notes: εI, εII, εIII—Strain for three characteristic stages; EI, EII, EIII—Elastic modulus for three characteristic stages.
    下载: 导出CSV

    表  2  模型边界参数

    Table  2.   Boundary parameters of model

    Step Model boundary Settings of displacement boundaryRegion
    Step-1BC-1U2=30 mm; U1=UR2=U3=UR1=UR3=0SET-1
    BC-2UR2=0.523; U1=U2=U3=UR1=UR3=0RP-1
    BC-3UR2=−0.523; U1=U2=U3=UR1=UR3=0RP-2
    Step-2BC-4ENCASTRESET-2
    BC-5U3=100 mm; U1=UR2=U3=UR1=UR3=0SET-3
    Note: U, UR—Boundary displacement parameters.
    下载: 导出CSV
  • [1] AMBROZIAK A, KŁOSOWSKI P. Mechanical properties for preliminary design of structures made from PVC coated fabric[J]. Construction and Building Materials,2014,50:74-81. doi: 10.1016/j.conbuildmat.2013.08.060
    [2] QING Q, SHEN S S, GONG J H. Deflation behavior and related safety assessment of an air-supported membrane structure[J]. Thin-Walled Structures,2018,129:225-236. doi: 10.1016/j.tws.2018.01.037
    [3] KANDEL A, SUN X Y, WU Y. Wind-induced responses and equivalent static design method of oval-shaped arch-supported membrane structure[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,213:104620. doi: 10.1016/j.jweia.2021.104620
    [4] CHEN J W, CHEN W J, ZHAO B, et al. Mechanical responses and damage morphology of laminated fabrics with a central slit under uniaxial tension: A comparison between analytical and experimental results[J]. Construction and Building Materials,2015,101:488-502. doi: 10.1016/j.conbuildmat.2015.10.134
    [5] 陈建稳, 陈务军, 侯红青, 等. 织物类蒙皮材料中心切缝撕裂破坏强度分析[J]. 复合材料学报, 2016, 33(3):666-674.

    CHEN Jianwen, CHEN Wujun, HOU Hongqing, et al. Analysis on tearing strength of envelope fabric materials under central crack tearing[J]. Acta Materiae Compositae Sinica,2016,33(3):666-674(in Chinese).
    [6] 张营营, 张其林, 周传志. PTFE膜材的单向拉伸性能[J]. 建筑材料学报, 2010, 13(4):535-539. doi: 10.3969/j.issn.1007-9629.2010.04.024

    ZHANG Yingying, ZHANG Qilin, ZHOU Chuanzhi. Uniaxial tensile properties of PTFE membrane material[J]. Jour-nal of Building Materials,2010,13(4):535-539(in Chinese). doi: 10.3969/j.issn.1007-9629.2010.04.024
    [7] 矫卫红, 陈南梁. 经编双轴向织物用作涂层基布的性能优势[J]. 东华大学学报(自然科学版), 2004, 30(6):91-95.

    JIAO Weihong, CHEN Nanliang. Performance advantages of warp knitting biaxial fabrics used as coating substrates[J]. Journal of Donghua University (Natural Science),2004,30(6):91-95(in Chinese).
    [8] 宋寅搏, 陈务军, 高成军, 等. 飞艇用织物膜材单轴拉伸蠕变强度试验与模型[J]. 复合材料学报, 2022, 39(10):5041-5048.

    SONG Yinbo, CHEN Wujun, GAO Chengjun, et al. Uniaxial tensile creep experiment and creep model of fabric for airship structures[J]. Acta Materiae Compositae Sinica,2022,39(10):5041-5048(in Chinese).
    [9] 李龙, 段跃新, 李超, 等. 双轴向经编织物T700/BMI6421复合材料力学性能[J]. 复合材料学报, 2011, 28(6):92-97.

    LI Long, DUAN Yuexin, LI Chao, et al. Mechanical properties of bi-axial warp-knitted fabric T700/BMI6421 compo-sites[J]. Acta Materiae Compositae Sinica,2011,28(6):92-97(in Chinese).
    [10] 谈亚飞. 经编复合材料的市场现状与发展趋势[J]. 针织工业, 2010, 38(2):17-20. doi: 10.3969/j.issn.1000-4033.2010.02.009

    TAN Yafei. The present market situation and developing trend of the warp knitted composites fabric[J]. Knitting Industries,2010, 38(2):17-20(in Chinese). doi: 10.3969/j.issn.1000-4033.2010.02.009
    [11] 王思明, 谭惠丰, 罗锡林, 等. Nylon-230 T/TPU织物蒙皮撕裂性能的数值模拟和试验研究[J]. 复合材料学报, 2018, 35(7):1869-1877.

    WANG Siming, TAN Huifeng, LUO Xilin, et al. Numerical simulation and experimental study on fabric skin tearing properties of Nylon-230 T/TPU[J]. Acta Materiae Compo-sitae Sinica,2018,35(7):1869-1877(in Chinese).
    [12] 包晗, 张旭波, 吴明儿. PVC涂层聚酯纤维膜材撕裂性能试验研究[J]. 建筑材料学报, 2020, 23(3):631-641.

    BAO Han, ZHANG Xubo, WU Minger. Experimental study on tearing behavior of PVC coated polyester fiber membrane[J]. Journal of Building Materials,2020,23(3):631-641(in Chinese).
    [13] ZHANG Y Y, SONG X G, ZHANG Q L, et al. Fracture failure analysis and strength criterion for PTFE coated woven fabrics[J]. Journal of Composite Materials,2015,49(12):1409-1421.
    [14] SHI T B, CHEN W J, GAO C J, et al. Biaxial constitutive relationship and strength criterion of composite fabric for airship structures[J]. Composite Structures,2019,214(28):379-389.
    [15] ZHANG X, WU M B, BAO H E. Tearing behaviors of polytetrafluoroethylene coated fabric under uniaxial in-plane tearing tests[J]. Textile Research Journal,2022,92(5):929-953.
    [16] LI X C, ZHANG Y Y, XU J H, et al. Central tearing behavior of PVDF coated fabrics with multiple initial notches[J]. Polymer Composites,2021,42(2):1049-1058. doi: 10.1002/pc.25885
    [17] HE R J, SUN X Y, WU Y, et al. Biaxial tearing properties of woven coated fabrics using digital image correlation[J]. Composite Structures,2021,272:114206. doi: 10.1016/j.compstruct.2021.114206
    [18] 张营营, 赵玉帅, 徐俊豪, 等. PVC涂层织物撕裂破坏机理分析与强度预测模型[J]. 建筑结构学报, 2018, 39(S2):336-343.

    ZHANG Yingying, ZHAO Yushuai, XU Junhao, et al. Analysis of tearing failure mechanism and strength predictive model of PVC coated fabrics[J]. Journal of Building Structures,2018,39(S2):336-343(in Chinese).
    [19] ZHANG X B, WU M E. Modified stress field model for critical tearing strength of architectural coated fabrics[J]. Jour-nal of Industrial Textiles,2022,51(4):5560-5591.
    [20] 刘龙斌, 吕明云, 肖厚地. 含初始裂纹的平流层飞艇用蒙皮薄膜撕裂行为[J]. 复合材料学报, 2015, 32(2):508-514. doi: 10.13801/j.cnki.fhclxb.20140603.001

    LIU Longbin, LYU Mingyun, XIAO Houdi. Tearing behaviors of envelope thin films used in stratospheric airships with initial cracks[J]. Acta Materiae Compositae Sinica,2015,32(2):508-514(in Chinese). doi: 10.13801/j.cnki.fhclxb.20140603.001
    [21] 张旭波, 吴明儿, 包晗. 涂层织物类膜材的偏轴梯形撕裂行为[J]. 建筑材料学报, 2021, 24(1):121-130. doi: 10.3969/j.issn.1007-9629.2021.01.017

    ZHANG Xubo, WU Minger, BAO Han. Off-axial trapezoid tearing behaviors of coated fabrics[J]. Journal of Building Materials,2021,24(1):121-130(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.017
    [22] WANG P, SUN B Z, GU B H. Comparisons of trapezoid tearing behaviors of uncoated and coated woven fabrics from experimental and finite element analysis[J]. International Journal of Damage Mechanics,2013,22(4):464-489. doi: 10.1177/1056789512450524
    [23] FORSTER B, MOLLAERT M. European design guide for tensile surface structure[M]. Brussels: Tensinet Association, 2004.
    [24] Membrane Structures Association of Japan. Testing method for inplane shear properties of membrane materials: MSAJ/M-01[S]. Tokyo: Membrane Structures Association of Japan, 1993.
    [25] Membrane Structures Association of Japan. Testing method for elastic constants of membrane materials: MSAJ/M-02[S]. Tokyo: Membrane Structures Association of Japan, 1995.
    [26] NATALIE S, JORG U. Prospect for European guidance for the structural design of tensile membrane structures[M]. Brussels: European Commission, 2016.
    [27] 张若男, 陈建稳. 经编织物膜材偏轴中心撕裂行为及破坏机理[J]. 复合材料科学与工程, 2022, 10 (5):28-36. doi: 10.19936/j.cnki.2096-8000.20220528.004

    ZHANG Ruonan, CHEN Jianwen. Off-axis central tearing behaviors and damage mechanisms of warp-knitted fabric membranes[J]. Composites Science and Engineering,2022,10 (5):28-36(in Chinese). doi: 10.19936/j.cnki.2096-8000.20220528.004
    [28] 陈建稳, 关晓宇, 张若男, 等. 拉剪耦合应力对经编织物类膜材双轴撕裂破坏影响机制[J]. 华南理工大学学报(自然科学版), 2021, 49(10):78-86.

    CHEN Jianwen, GUAN Xiaoyu, ZHANG Ruonan, et al. Biaxial tearing behaviors and mechanisms of warp-knitted fabric membranes under combined shear and tensile stresses[J]. Journal of South China University of Technology (Natural Science Edition),2021,49(10):78-86(in Chinese).
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  235
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回