留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展

李筱霏 赵恩德 彭少波 朱雨辰 蔡琳 乔靓

李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 40(8): 4374-4389. doi: 10.13801/j.cnki.fhclxb.20230328.001
引用本文: 李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 40(8): 4374-4389. doi: 10.13801/j.cnki.fhclxb.20230328.001
LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4374-4389. doi: 10.13801/j.cnki.fhclxb.20230328.001
Citation: LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4374-4389. doi: 10.13801/j.cnki.fhclxb.20230328.001

MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展

doi: 10.13801/j.cnki.fhclxb.20230328.001
基金项目: 国家自然科学基金(52172145);吉林省科技发展计划项目(YDZJ202101ZYTS165;20230402066GH)
详细信息
    通讯作者:

    乔靓,博士,教授,硕士生导师,研究方向为能源与催化材料 E-mail: qiaol@ccu.edu.cn

  • 中图分类号: TB331;TQ151.1

Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting

Funds: National Natural Science Foundation of China (52172145); Science and Technology Development Project of Jilin Province (YDZJ202101ZYTS165; 20230402066GH)
  • 摘要: 氢能是未来替代化石能源的最理想新能源,电化学水分解是目前最有效的制氢方法。为实现电解水制氢和制氧的大规模推广和应用,首要任务是设计开发高效、稳定、低成本的电解水催化剂。过渡金属硫族化合物因其固有的电催化活性和丰富的化学相组成已成为理想的电解水催化剂,其中具有层状结构的CoSe2是最具代表性的过渡金属硒化物。金属有机骨架(MOF)具有高度有序的多孔结构和较大的比表面积,采用MOF为前驱体制备得到的MOF衍生CoSe2电催化剂可以继承其MOF前驱体的结构优势。这种MOF衍生制备方法是进一步提高CoSe2电解水催化活性的有效手段。本文综述了国内外近年来MOF衍生CoSe2基电催化剂电解水性能的重要研究进展,简要介绍了CoSe2的晶体结构和相变调控,叙述了MOF衍生CoSe2基电催化剂的制备方法,重点阐述了调控其电解水析氢和析氧催化性能的改性手段,并对未来MOF衍生CoSe2基电催化材料在电解水领域的发展进行了展望。

     

  • 图  1  电解水装置示意图

    HER—Hydrogen evolution reaction; OER—Oxygen evolution reaction

    Figure  1.  Schematic illustration of conventional water electrolyzer

    图  2  立方黄铁矿型 (a) 和正交白铁矿型 (b) CoSe2的晶体结构[31]

    Figure  2.  Crystal structures of CoSe2 in cubic pyrite-type phase (a) and orthorhombic marcasite-type phase (b)[31]

    图  3  (a) CoSe2微球合成过程示意图;(b) CoSe2-450微球的SEM图像;(c) CoSe2微球和商业IrO2在320 mV至390 mV过电位下的转换频率(TOF);(d) CoSe2-450和商业IrO2 1000次循环前后的线性扫描伏安曲线(插图为330 mV过电位下的电流密度-时间曲线)[26]

    BTC3–—1, 3, 5-benzenetricarboxylic ion; MOFs—Metal organic frameworks; RHE—Reversible hydrogen electrode

    Figure  3.  (a) Schematic illustration of the synthetic strategy for the CoSe2 microspheres; (b) SEM image of CoSe2-450 microsphere; (c) Turnover frequency (TOF) of CoSe2 microspheres and commercial IrO2 at different overpotentials from 320 mV to 390 mV; (d) Linear sweep voltammetry curves for the 1st and1000th potential cycles of CoSe2-450 and commercial IrO2 (Inset: Current-time curves at overpotential of 330 mV)[26]

    图  4  ZIF-67 (a)、Fe-ZIF-67 (b) 和Fe-CoSe2@NC (c) 的SEM图像;(d) Fe-CoSe2@NC合成示意图,包括Fe3+蚀刻ZIF-67和随后的煅烧硒化;(e) CoSe2@NC和Fe-CoSe2@NC的线性扫描伏安曲线;(f) CoSe2和Fe-CoSe2的氢吸附吉布斯自由能图(插图为在CoSe2(右)和Fe-CoSe2(左)中Co位点上的氢吸附分子结构)[48]

    j—Current density; E—Potential; NC—N doped carbon

    Figure  4.  SEM images of ZIF-67 (a), Fe-ZIF-67 (b) and Fe-CoSe2@NC (c); (d) Schematic illustration of the synthetic process of Fe-CoSe2@ NC, involving Fe3+ etching of ZIF-67 and the following thermal selenization; (e) Linear sweep voltammetry curves of CoSe2@NC and Fe-CoSe2@NC; (f) Calculated free-energy diagrams of the hydrogen evolution reaction of pristine CoSe2 and Fe-doped CoSe2 (Inset: Molecular structures with H adsorption on the Co site of CoSe2 (right) and Fe-CoSe2 (left))[48]

    图  5  CoSe2/FeSe2@C异质结构的合成过程示意图 (a) 和SEM图像 (b);CoSe2/FeSe2@C、商业RuO2、CoFe2O4@C、CoSe2@C及FeSe2@C的线性扫描伏安曲线 (c) 和Tafel斜率 (d)[55]

    Figure  5.  Schematic illustration of the synthetic process (a) and SEM image (b) of CoSe2/FeSe2@C heterostructure; Linear sweep voltammetry curves (c) and Tafel slopes (d) of CoSe2/FeSe2@C, commercial RuO2, CoFe2O4@C, CoSe2@C and FeSe2@C[55]

    图  6  CoSe2@NC-NR/CNT的合成过程示意图 (a)、SEM (b) 和TEM (c) 图像[59];CoSe2@NC-CNT的合成过程示意图 (d) 和TEM图像 (e)[60]

    CNT—Carbon nanotubes; ZIF-67—Zeolitic imidazolate framework-67; NC-NR—N-doped carbon nanorod; PVP—Polyvinyl pyrrolidone

    Figure  6.  Schematic illustration of the synthetic process (a), SEM (b) and TEM (c) images of CoSe2@NC-NR/CNT[59]; Schematic illustration of the synthetic process (d) and TEM image (e) of CoSe2@NC-CNT[60]

    图  7  Zn掺杂CoSe2/CFC的合成过程示意图 (a) 和SEM图像 (b);CoSe2/CFC、Zn掺杂CoSe2/CFC的线性扫描伏安曲线 (c) 和Tafel斜率 (d)[63]

    MOFZnCo—ZnCo metal organic framework

    Figure  7.  Schematic illustration of the synthetic process (a) and SEM image (b) of Zn-doped CoSe2/CFC; Linear sweep voltammetry curves (c) and Tafel slopes (d) of CoSe2/CFC and Zn-doped CoSe2/CFC[63]

    图  8  花状MOF衍生CoSe2 (MOF-D CoSe2)的SEM图像 ((a)~(c)) 及其示意图 (d);(e) MOF-D CoSe2、CoSe2和商业Pt/C的析氢反应(HER)线性扫描伏安曲线;(f) MOF-D CoSe2、Co-MOF、CoSe2和RuO2的析氧反应(OER)线性扫描伏安曲线[69]

    Figure  8.  SEM images ((a)-(c)) and the corresponding schematic illustration (d) of flower-shaped MOF-derived CoSe2 (MOF-D CoSe2); (e) Linear sweep voltammetry curves for the hydrogen evolution reaction (HER) of MOF-D CoSe2, bare CoSe2, and commercial Pt/C; (f) Linear sweep voltammetry curves for the oxygen evolution reaction (OER) of MOF-D CoSe2, Co-MOF, bare CoSe2 and RuO2[69]

    表  1  MOF衍生CoSe2基电催化剂电解水析氢和析氧性能

    Table  1.   Electrocatalytic HER and OER performance of MOF derived CoSe2-based electrocatalysts

    ElectrocatalystElectrolyteOverpotentiala/mVCell
    voltagea/V
    Morphology of CoSe2Ref.
    HEROER
    CoSe2-NC NSs1.0 mol/L KOH752471.54Nanoparticles[23]
    CoSe2-4501.0 mol/L KOH330Microspheres[26]
    CoSe2-1600.5 mol/L H2SO4156Microcubes[27]
    1.0 mol/L KOH328
    CoSe2@N/C-CNT0.5 mol/L H2SO4185Nanoparticles[28]
    1.0 mol/L KOH340
    (Ni, Co)Se2/C1.0 mol/L KOH87245Hollow rhombic dodecahedra[47]
    1.0 mol/L and
    6.0 mol/L KOH
    1.58
    Fe-CoSe2@NC0.5mol/L H2SO4143Rhombic dodecahedra
    [48]
    (Ni, Co)Se23.0 mol/L KOH278Nanoparticles[49]
    Zn0.1Co0.9Se20.5 mol/L H2SO4140Hollow dodecahedra[50]
    1.0 mol/L KOH340
    CoSe2/(NiCo)Se20.5 mol/L H2SO4200bNanocubes[52]
    RuSe2-CoSe21.0 mol/L KOH2001.61bNanosheets[53]
    FeSe2-CoSe2/CoSe21.0 mol/L KOH260Yolk-shell nanoboxes
    [54]
    CoSe2/FeSe2@C1.0 mol/L KOH291Nanoparticles[55]
    (Co, Fe)Se21.0 mol/L KOH124Hollow polyhedra[56]
    CoSe2/MoSe21.0 mol/L KOH168Hollow nanospheres[57]
    CoSe2/CNTs1.0 mol/L KOH1903001.75Nanosheets[61]
    CoSe2@rGO1.0 mol/L KOH296[62]
    CoSe2/CFC1.0 mol/L KOH356Nanosheets[63]
    CoSe2/CF1.0 mol/L KOH952971.63Nanoparticles[64]
    CC/MOF-CoSe2@MoSe2
    CoSe2@MoSe2
    1.0 mol/L KOH109.87183.811.53Core of the
    core-shell
    [65]
    CoSe2@DC0.5 mol/L H2SO4132Nanoparticles[68]
    MOF-D CoSe20.5 mol/L H2SO4195Flower-like nanoplates[69]
    1.0 mol/L KOH320
    Notes: NC NSs—Nitrogen doped carbon nanosheets; N/C-CNT—N-doped graphitized carbon carbon nanotube; CNTs—Carbon nanotubes; rGO—Reduced graphene oxide; CFC—Carbon fabric collector; CF—Carbon fiber; CC/MOF—Metal organic framework on carbon cloth; DC—Defective carbon; MOF-D—Metal organic framework-derived; a—The overpotential and cell voltage are obtained at the current density of 10 mA·cm-2; b—The overpotential and cell voltage are obtained at the current density of 50 mA·cm-2.
    下载: 导出CSV
  • [1] LI Y, CHEN J X, CAI P W, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation[J]. Journal of Materials Chemistry A,2018,6(12):4948-4954. doi: 10.1039/C7TA10374C
    [2] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews,2017,46(2):337-365. doi: 10.1039/C6CS00328A
    [3] ROGER I, SHIPMAN M A, SYMES M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry,2017,1(1):0003. doi: 10.1038/s41570-016-0003
    [4] CHEN G, WANG T, ZHANG J, et al. Accelerated hydrogen evolution kinetics on NiFe-Layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Advanced Materials,2018,30(10):1706279. doi: 10.1002/adma.201706279
    [5] CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem,2014,6(8):2219-2223. doi: 10.1002/cctc.201402194
    [6] LI C, BAEK J B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction[J]. ACS Omega,2020,5(1):31-40. doi: 10.1021/acsomega.9b03550
    [7] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry,2013,5(4):263-275. doi: 10.1038/nchem.1589
    [8] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials,2019,32(3):1806326.
    [9] MAJHI K C, YADAV M. Transition metal chalcogenides based nanocomposites as efficient electrocatalyst for hydrogen evolution reaction over the entire pH range[J]. International Journal of Hydrogen Energy,2020,45(46):24219-24231. doi: 10.1016/j.ijhydene.2020.06.230
    [10] NITHYA V D. Recent advances in CoSe2 electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2021,46(73):36080-36102. doi: 10.1016/j.ijhydene.2021.08.157
    [11] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review[J]. ACS Catalysis,2016,6(12):8069-8097. doi: 10.1021/acscatal.6b02479
    [12] ASLAN E, SARILMAZ A, YANALAK G, et al. Transition metal-incorporated tungsten-based ternary refractory metal selenides (MWSex; M = Fe, Co, Ni, and Mn) as hydrogen evolution catalysts at soft interfaces[J]. Materials Today Energy,2020,18:100510. doi: 10.1016/j.mtener.2020.100510
    [13] FENG Y F, WANG S J, WANG H Y, et al. An efficient and stable Ni-Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction[J]. Journal of Materials Science,2020,55(28):13927-13937. doi: 10.1007/s10853-020-05002-w
    [14] LI S S, HAO X G, ABUDUL A, et al. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives[J]. Journal of Materials Chemistry A,2019,7(32):18674-18707. doi: 10.1039/C9TA04949E
    [15] LIN J, HE J R, QI F, et al. In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Electrochimica Acta,2017,247:258-264. doi: 10.1016/j.electacta.2017.06.179
    [16] XUE N, LIN Z, LI P K, et al. Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2020,12(25):28288-28297.
    [17] YANG X, CHEN T, LIU L, et al. Multipronged fabrication of Co3Se4 wrapped into N-doped multiwall carbon nanotubes tangled hollow dodecahedron framework for overall water splitting under benign condition[J]. Advanced Materials Interfaces,2021,8(17):2100879. doi: 10.1002/admi.202100879
    [18] SAMAL R, MANE P, BHAT M, et al. Stabilization of orthorhombic CoSe2 by 2D-rGO/MWCNT heterostructures for efficient hydrogen evolution reaction and flexible energy storage device applications[J]. ACS Applied Energy Materials,2021,4(10):11386-11399. doi: 10.1021/acsaem.1c02205
    [19] SUN J K, XU Q. Functional materials derived from open framework templates/precursors: Synthesis and applications[J]. Energy & Environmental Science,2014,7(7):2071-2100.
    [20] DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials,2017,3(1):17075. doi: 10.1038/natrevmats.2017.75
    [21] MANJUNATHA H, JANARDAN S, RATNAMALA A, et al. Electrochemical aspects of metal-organic frameworks[M]//Metal-organic frameworks for chemical reactions. Amsterdam: Elsevier Inc, 2021: 65-109.
    [22] LI Z, JIANG Z Z, ZHU W Y, et al. Facile preparation of CoSe2 nano-vesicle derived from ZIF-67 and their application for efficient water oxidation[J]. Applied Surface Science,2020,504:144368. doi: 10.1016/j.apsusc.2019.144368
    [23] CAO H, LI H L, LIU L H, et al. Salt-templated nanoarchitectonics of CoSe2-NC nanosheets as an efficient bifunctional oxygen electrocatalyst for water splitting[J]. International Journal of Molecular Sciences,2022,23(9):5239. doi: 10.3390/ijms23095239
    [24] DENG Y H, YE C, CHEN G, et al. EDTA-assisted hydrothermal synthesis of flower-like CoSe2 nanorods as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Journal of Energy Chemistry,2019,28:95-100. doi: 10.1016/j.jechem.2018.01.022
    [25] LAN K, LI J, ZHU Y, et al. Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science,2019,539:646-653. doi: 10.1016/j.jcis.2018.12.044
    [26] LIU X B, LIU Y C, FAN L Z. MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction[J]. Journal of Materials Chemistry A,2017,5(29):15310-15314. doi: 10.1039/C7TA04662F
    [27] ZHAO A H, XU G C, LI Y, et al. MOF-derived hierarchical CoSe2 with sheetlike nanoarchitectures as an efficient bifunctional electrocatalyst[J]. Inorganic Chemistry,2020,59(17):12778-12787. doi: 10.1021/acs.inorgchem.0c01828
    [28] DING H, XU G C, ZHANG L, et al. A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogen-doped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework[J]. Journal of Colloid and Interface Science,2020,566:296-303. doi: 10.1016/j.jcis.2020.01.096
    [29] ZABRA R, PERVAIZ E, YANG M, et al. A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(46):24518-24543. doi: 10.1016/j.ijhydene.2020.06.236
    [30] LI M L, SHU C Z, HU A J, et al. Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries[J]. Journal of Materials Science & Technology,2021,92:159-170.
    [31] KONG D S, WANG H T, LU Z Y, et al. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society,2014,136(13):4897-4900. doi: 10.1021/ja501497n
    [32] ZHANG K, ZHANG G, QU J H, et al. Zinc substitution-induced subtle lattice distortion mediates the active center of cobalt diselenide electrocatalysts for enhanced oxygen evolution[J]. Small,2020,16(11):1907001. doi: 10.1002/smll.201907001
    [33] DODONY I, POSFAI M, BUSECK P R. Structural relationship between pyrite and marcasite[J]. American Mineralogist,1996,81:119-125. doi: 10.2138/am-1996-1-215
    [34] CHEN P Z, XU K, TAO S, et al. Phase-transformation engi-neering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Advanced Materials,2016,28(34):7527-7532. doi: 10.1002/adma.201601663
    [35] ZHANG H X, YANG B, WU X L, et al. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction[J]. ACS Applied Materials Interfaces,2015,7(3):1772-1779. doi: 10.1021/am507373g
    [36] LI H M, QIAN X, ZHU C L, et al. Template synthesis of CoSe2/Co3Se4 nanotubes: Tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium[J]. Journal of Materials Chemistry A,2017,5(9):4513-4526. doi: 10.1039/C6TA10718D
    [37] ZHENG Y R, WU P, GAO M R, et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis[J]. Nature Communications,2018,9(1):2533. doi: 10.1038/s41467-018-04954-7
    [38] LI M, SHU C, HU A, et al. Invigorating the catalytic activity of cobalt selenide via structural phase transition engineering for lithium-oxygen batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5018-5027.
    [39] LI W, LIU Z, YANG H, et al. Doping-induced polymorph transformation to boost ultrafast sodium storage in hierarchical CoSe2-carbon arrays[J]. Materials Today Energy,2021,20:100631. doi: 10.1016/j.mtener.2020.100631
    [40] ZHU Y P, CHEN H C, HSU C S, et al. Operando unraveling of the structural and chemical stability of p-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte[J]. ACS Energy Letters,2019,4(4):987-994. doi: 10.1021/acsenergylett.9b00382
    [41] LI X F, PAN D, DENG J, et al. Phase-junction engineering boosts the performance of CoSe2 for efficient sodium/potassium storage[J]. Journal of Materials Chemistry A,2021,9(46):25954-25963. doi: 10.1039/D1TA08072E
    [42] ZHANG X L, HU S J, ZHENG Y R, et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy[J]. Nature Communications,2019,10(1):5338. doi: 10.1038/s41467-019-12992-y
    [43] ZHENG W R, LIU M J, LEE L Y S. Electrochemical instabi-lity of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites[J]. ACS Catalysis,2019,10(1):81-92.
    [44] WANG L, LI S, ZHANG X, et al. CoSe2 hollow microspheres with superior oxidase-like activity for ultrasensitive colorimetric biosensing[J]. Talanta,2020,216:121009. doi: 10.1016/j.talanta.2020.121009
    [45] LIU H, GUO H, WU N, et al. Rational design of nickel-cobalt selenides derived from multivariate bimetal metal-organic frameworks for high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds,2021,856:156535. doi: 10.1016/j.jallcom.2020.156535
    [46] ABDELKADER F V K, FERNANDES D M, BALULA S S, et al. Noble-metal-free MOF-74-derived nanocarbons: Insights on metal composition and doping effects on the electrocatalytic activity toward oxygen reactions[J]. ACS Applied Energy Materials,2019,2(3):1854-1867. doi: 10.1021/acsaem.8b02010
    [47] MING F W, LIANG H F, SHI H H, et al. Hierarchical (Ni, Co)Se2/carbon hollow rhombic dodecahedra derived from metal-organic frameworks for efficient water-splitting electrocatalysis[J]. Electrochimica Acta,2017,250:167-173. doi: 10.1016/j.electacta.2017.08.047
    [48] WU X L, HAN S, HE D H, et al. Metal organic framework derived Fe-doped CoSe2 incorporated in nitrogen-doped carbon hybrid for efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8672-8678.
    [49] SHEN W Q, GUO X G, SUN J, et al. Prussian blue analogues derived binary nickel-cobalt selenide for enhanced pseudocapacitance and oxygen evolution reaction[J]. Vacuum,2019,170:108965. doi: 10.1016/j.vacuum.2019.108965
    [50] WANG X, LI F, LI W Z, et al. Hollow bimetallic cobalt-based selenide polyhedrons derived from metal-organic framework: An efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A,2017,5(34):17982-17989. doi: 10.1039/C7TA03167J
    [51] ZHU H Y, LI Z Y, XU F, et al. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery[J]. Journal of Colloid and Interface Science,2022,611:718-725. doi: 10.1016/j.jcis.2021.11.175
    [52] PARK S K, KIM J K, KANG Y C. Metal-organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution[J]. Journal of Materials Chemistry A,2017,5(35):18823-18830.
    [53] XU S J, HU J H, HUANG L H, et al. Anchoring RuSe2 on CoSe2 nanoarrays as a hybrid catalyst for efficient and robust oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2022,615:327-334. doi: 10.1016/j.jcis.2022.01.111
    [54] RAMESH S K, GANESAN V, KIM J. FeSe2-CoSe2/CoSe2 yolk-shell nanoboxes as superior electrocatalysts for the oxygen evolution reaction[J]. Materials Letters,2022,323:132573. doi: 10.1016/j.matlet.2022.132573
    [55] LI W, NIU Y L, WU X J, et al. Heterostructured CoSe2/FeSe2 nanoparticles with abundant vacancies and strong electronic coupling supported on carbon nanorods for oxygen evolution electrocatalysis[J]. ACS Sustainable Chemistry & Engineering,2020,8(11):4658-4666.
    [56] XUE Y Q, WANG X C, ZHU M, et al. Construction of hollow structure cobalt iron selenide polyhedrons for efficient hydrogen evolution reaction[J]. International Journal of Energy Research,2020,44(14):12045-12055. doi: 10.1002/er.5855
    [57] TANG X L, ZHANG J Y, MEI B B, et al. Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazine-assisted hydrogen evolution[J]. Chemical Engineering Journal,2021,404:126529. doi: 10.1016/j.cej.2020.126529
    [58] YANG S H, PARK S K, KANG Y C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes[J]. Chemical Engineering Journal,2019,370:1008-1018. doi: 10.1016/j.cej.2019.03.263
    [59] PARK S K, KANG Y C. MOF-templated N-doped carbon-coated CoSe2 nanorods supported on porous CNT microspheres with excellent sodium-ion storage and electrocatalytic properties[J]. ACS Applied Materials Interfaces,2018,10(20):17203-17213. doi: 10.1021/acsami.8b03607
    [60] WANG W, CUI Q Y, SUN D, et al. Enhanced electrocatalytic performance in dye-sensitized solar cell via coupling CoSe2@N-doped carbon and carbon nanotubes[J]. Jour-nal of Materials Chemistry C,2021,9:7046-7056. doi: 10.1039/D1TC01205C
    [61] WEI G J, DU K, ZHAO X X, et al. Cable-like carbon nanotubes decorated metal-organic framework derived ultrathin CoSe2/CNTs nanosheets for electrocatalytic overall water splitting[J]. Chinese Chemical Letters,2020,31(10):2641-2644. doi: 10.1016/j.cclet.2020.02.029
    [62] JI K, ZHANG X, CHEN Q D, et al. Composite nanoarchitectonics of ZIF-67 derived CoSe2/rGO with superior charge transfer for oxygen evolution reaction[J]. Electrochimica Acta,2022,426:140785. doi: 10.1016/j.electacta.2022.140785
    [63] DONG Q C, WANG Q, DAI Z Y, et al. MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction[J]. ACS Applied Materials Interfaces,2016,8(40):26902-26907. doi: 10.1021/acsami.6b10160
    [64] SUN C C, DONG Q C, YANG J, et al. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting[J]. Nano Research,2016,9(8):2234-2243. doi: 10.1007/s12274-016-1110-1
    [65] PATIL S J, CHODANKAR N R, HWANG S K, et al. Co-metal-organic framework derived CoSe2@MoSe2 core-shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting[J]. Chemical Engineering Journal,2022,429:132379. doi: 10.1016/j.cej.2021.132379
    [66] LU M X, LIU C, LI X Y, et al. Mixed phase Mo-doped CoSe2 nanosheets encapsulated in N-doped carbon shell with boosted sodium storage performance[J]. Journal of Alloys and Compounds,2022,922:166265. doi: 10.1016/j.jallcom.2022.166265
    [67] LIANG H J, LI X T, LIU X L, et al. Epitaxial growth induced multilayer yolk-shell structured CoSe2 with promoting transport kinetics of sodium ion half/full batteries[J]. Journal of Power Sources,2022,517:230729. doi: 10.1016/j.jpowsour.2021.230729
    [68] ZHOU W, LU J, ZHOU K, et al. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy,2016,28:143-150. doi: 10.1016/j.nanoen.2016.08.040
    [69] SAHU N, DAS J K, BEHERA J N. Metal-organic framework (MOF) derived flower-shaped CoSe2 nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions[J]. Sustainable Energy & Fuels,2021,5(19):4992-5000.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  440
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-10
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回