留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnFe2O4@聚多巴胺@Ag纳米复合材料的制备及其抑菌性

史娟 梁犇 宋凤敏 郝梦超 韩媛媛 吴迎花 邱莹 杨骏鹏 郭少波

史娟, 梁犇, 宋凤敏, 等. ZnFe2O4@聚多巴胺@Ag纳米复合材料的制备及其抑菌性[J]. 复合材料学报, 2023, 40(12): 6774-6788. doi: 10.13801/j.cnki.fhclxb.20230317.001
引用本文: 史娟, 梁犇, 宋凤敏, 等. ZnFe2O4@聚多巴胺@Ag纳米复合材料的制备及其抑菌性[J]. 复合材料学报, 2023, 40(12): 6774-6788. doi: 10.13801/j.cnki.fhclxb.20230317.001
SHI Juan, LIANG Ben, SONG Fengmin, et al. Preparation and antibacterial properties of ZnFe2O4@polydopamine@Ag nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6774-6788. doi: 10.13801/j.cnki.fhclxb.20230317.001
Citation: SHI Juan, LIANG Ben, SONG Fengmin, et al. Preparation and antibacterial properties of ZnFe2O4@polydopamine@Ag nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6774-6788. doi: 10.13801/j.cnki.fhclxb.20230317.001

ZnFe2O4@聚多巴胺@Ag纳米复合材料的制备及其抑菌性

doi: 10.13801/j.cnki.fhclxb.20230317.001
基金项目: 陕西省科技厅项目(2020ZDLGY11-02;2021SF-382;2021JQ-752);陕西理工大学秦巴生物资源与生态环境省部共建国家重点实验室项目(SXJ-2106);陕西理工大学科研一般项目(SLGKYXM2208);陕西省科技厅项目(2023-JC-QN-0162)
详细信息
    通讯作者:

    史 娟,博士,教授,硕士生导师,研究方向为有机功能材料的合成和天然产物提取 E-mail: 446269824@qq.com

    郭少波,硕士,讲师,研究方向为生物材料 E-mail: 1403699360@qq.com

  • 中图分类号: TB333;O614

Preparation and antibacterial properties of ZnFe2O4@polydopamine@Ag nanocomposites

Funds: Project of Science and Technology Department of Shaanxi Province (2020ZDLGY11-02; 2021SF-382; 2021JQ-752); State Key Laboratory Project of Qinba Biological Resources and Ecological Environment, Shaanxi University of Technology (SXJ-2106); General Scientific Research Project of Shaanxi University of Technology (SLGKYXM2208); Project of Science and Technology Department of Shaanxi Province (2023-JC-QN-0162)
  • 摘要: 随着生活质量的提高,抗生素已成为人类不可或缺的药物,但近年来抗生素的滥用导致大量耐药菌出现对社会健康造成了严重的威胁。因此,迫切需要开发新型、有效持久的抗菌剂,以应对日益增长的公共卫生需求。本文先以FeCl3、NaAc和ZnCl2为原料用“热溶剂法”制备磁性铁酸锌(ZnFe2O4),再以ZnFe2O4为核进行聚多巴胺(PDA)包覆形成ZnFe2O4@PDA纳米微球,最后将由化学还原法制备的粒径在2~16 nm的银纳米颗粒(Ag NPs)负载于ZnFe2O4@PDA表面,形成ZnFe2O4@PDA@Ag纳米复合材料。通过TEM、XRD、XPS、UV-Vis、FTIR、Zeta电位等表征材料形貌特征。以革兰氏阴性菌铜绿假单胞菌(P. aeruginosa)、革兰氏阳性菌金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)为模式菌,研究ZnFe2O4@PDA@Ag材料的抑菌活性及抑菌机制。实验结果表明,相比于同比例浓度的Ag NPs (负载量0.39%),材料对P. aeruginosa的抑菌率提升了57.1%、对S. aureusT-Salmonella提升值分别为61.7%和39.2%。材料浓度为200 μg/mL,作用时间60 min条件下,ZnFe2O4@PDA@Ag对测试菌抑制率均可达到99.9%。抑菌机制结果证实,ZnFe2O4@PDA@Ag可与细胞壁表面蛋白作用破坏细胞壁,进入细菌内部与胞内蛋白和相关酶作用阻碍细胞呼吸,且破坏DNA结构并抑制其复制过程,从而影响细菌呼吸和细胞分裂等生理生化过程,最终导致细菌死亡。该材料以磁性ZnFe2O4为内核,具有可重复利用、高性价比、无二次污染等优点;PDA层包覆使材料具有良好的生物相容性。同时,Ag NPs在ZnFe2O4@PDA纳米微球表面的负载,解决了Ag NPs易团聚问题,且因小颗粒Ag NPs可直接通过离子通道进入细菌内部,使ZnFe2O4@PDA@Ag具备了优异的抗菌活性。本工作可为新型、智能化抗生素材料的研发提供理论依据。

     

  • 图  1  (a) 磁性铁酸锌(ZnFe2O4)@聚多巴胺(PDA)@Ag纳米复合材料的制备流程图;ZnFe2O4 (b)、ZnFe2O4@PDA (c)、ZnFe2O4@PDA@Ag (d) 的TEM图像;ZnFe2O4 (e)、ZnFe2O4@PDA (f)、Ag纳米颗粒(NPs) (g)的粒径分布图

    Figure  1.  (a) Magnetic zinc ferrite (ZnFe2O4)@polydopamine (PDA)@Ag nanocomposite preparation flowchart; TEM images of ZnFe2O4 (b), ZnFe2O4@PDA (c), ZnFe2O4@PDA@Ag (d); Particle size distribution of ZnFe2O4 (e), ZnFe2O4@PDA (f), Ag nanoparticles (NPs) (g)

    d—Particle size

    图  2  ZnFe2O4、ZnFe2O4@PDA、ZnFe2O4@PDA@Ag纳米复合材料表征:((a)~(f)) ZnFe2O4@PDA@Ag的XPS图谱;(g) ZnFe2O4、ZnFe2O4@PDA、ZnFe2O4@PDA@Ag、Ag NPs的XRD图谱;(h) ZnFe2O4、ZnFe2O4@PDA、ZnFe2O4@PDA@Ag、Ag NPs的紫外吸收光谱图;(i) Ag NPs、ZnFe2O4、ZnFe2O4@PDA、ZnFe2O4@PDA@Ag的FTIR图谱

    Figure  2.  Characterization of ZnFe2O4, ZnFe2O4@PDA, ZnFe2O4@PDA@Ag nanocomposite: ((a)-(f)) XPS spectra of ZnFe2O4@PDA@Ag; (g) XRD patterns of ZnFe2O4, ZnFe2O4@PDA, ZnFe2O4@PDA@Ag and Ag NPs; (h) UV-Vis absorption spectra of ZnFe2O4, ZnFe2O4@PDA, ZnFe2O4@PDA@Ag and Ag NPs; (i) FTIR spectra of ZnFe2O4, ZnFe2O4@PDA, ZnFe2O4@PDA@Ag and Ag NPs

    图  3  不同材料对铜绿假单胞菌(P. aeruginosa)、金黄色葡萄球菌(S. aureus)和耐药菌沙门氏菌(T-Salmonella)的滤纸片扩散照片:((a1)~(a4)) 浓度为50、100、200、400 μg/mL的不同抑菌材料(Ag NPs负载量0.39%)对P. aeruginosa的抑菌结果照片;((b1)~(b4), (c1)~(c4)) S. aureusT-Salmonella的抑菌结果照片;((d)~(f)) 不同材料对P. aeruginosaS. aureusT-Salmonella的抑菌圈直径随浓度变化曲线

    Figure  3.  Different materials for pseudomonas aeruginosa (P. aeruginosa), staphylococcus aureus (S. aureus) and drug-resistant salmonella (T-Salmonella) filter paper spread photos: (a1)-(a4)) Bacteriostatic results photos of P. aeruginosa of different bacteriostatic materials (Loading of Ag NPs was 0.39%) with concentrations of 50, 100, 200 and 400 μg/mL; ((b1)-(b4), (c1)-(c4)) Antibacterial results photos against S. aureus and T-Salmonella; ((d)-(f)) Change curves of bacillus inhibition circle diameter with concentration on P. aeruginosa, S. aureus and T-Salmonella of different materials

    A, B, C and D correspond to distilled water, Ag NPs, ZnFe2O4@PDA and ZnFe2O4@PDA@Ag, respectively.

    图  4  ZnFe2O4@PDA@Ag纳米复合材料菌落计数照片:纳米复合材料抑制P. aeruginosa (a)、 S. aureus (b) 及 T-Salmonella (c) 的菌落计数分布图;(d) 纳米复合材料的时间-杀菌曲线;(e) 纳米复合材料对3种测试菌在不同时间的抑菌率比较图

    Figure  4.  Photos of colony count of ZnFe2O4@PDA@Ag nanocomposite: Distribution of colony count of nanocomposite materials inhibiting P. aeruginosa (a), S. aureus (b) and T-Salmonella (c); (d) Time-germicidal curves of the nanocomposite; (e) Comparison of the antibacterial rate of the nano-composite against the 3 tested bacteria at different time

    图  5  ZnFe2O4@PDA@Ag纳米复合材料抑菌机制实验结果图:((a)~(c)) 纳米复合材料作用P. aeruginosa (a)、S. aureus (b) 及T-Salmonella (c)的离子泄露实验结果;(d) 纳米复合材料与3种测试菌作用不同时间的Zeta电位值图;(e) 纳米复合材料的毒理性实验结果分析

    Figure  5.  Experimental result of bacteriostatic mechanism of ZnFe2O4@PDA@Ag nanocomposite material: ((a)-(c)) Results of ion leakage of nanocomposite materials acting on P. aeruginosa (a), S. aureus (b) and T-Salmonella (c); (d) Zeta potential values of nanocomposite materials interacting with the three tested bacteria at different time; (e) Analysis of experimental results of toxicity of nanocomposite materials

    IC50—Half maximal inhibitory concentration

    图  6  P. aeruginosa (a)、S.aureus (b) 、T-Salmonella (c) 纯菌及ZnFe2O4@PDA@Ag纳米复合材料对P. aeruginosa (d)、S.aureus (e) 及T-Salmonella (f) 的碘化丙啶(PI)染色照片

    Figure  6.  Propyl iodide (PI) staining photos of P. aeruginosa (a), S.aureus (b), T-Salmonella (c) and ZnFe2O4@PDA@Ag nanocomposite of P. aeruginosa (d), S. aureus (e) and T-Salmonella (f)

    图  7  ZnFe2O4@PDA@Ag纳米复合材料作用3种测试菌的微量热及细胞质泄露实验结果分析:纳米复合材料作用P. aeruginosa (a)、S. aureus (b) 和T-Salmonella (c) 的微量热实验结果图;纳米复合材料作用P. aeruginosa (d)、S. aureus (e) 和T-Salmonella (f) 的细胞质泄露实验结果

    Figure  7.  Microthermal analysis of ZnFe2O4@PDA@Ag nanocomposite for three kinds of test bacteria and analysis of cytoplasmic leakage experiment results: Microcaloric experimental results of nanocomposite materials acting on P. aeruginosa (a), S. aureus (b) and T-Salmonella (c); Cytoplasmic leakage test results of nanocomposite materials under the action of P. aeruginosa (d), S. aureus (e) and T-Salmonella (f)

    图  8  ZnFe2O4@PDA@Ag纳米复合材料抑菌机制图

    Figure  8.  Diagram of antibacterial mechanism of ZnFe2O4@PDA@Ag nanocomposite

    NADH—Nicotinamide adenine dinucleotide; NAD+—Oxidation status of NADH

    表  1  溶剂、Ag NPs、ZnFe2O4@PDA、ZnFe2O4@PDA@Ag对P. aeruginosaS. aureusT-Salmonella的抑菌圈尺寸

    Table  1.   Size of bacteriostasis circles for P. aeruginosa, S. aureus and T-Salmonella of solvent, Ag NPs, ZnFe2O4@PDA and ZnFe2O4@PDA@Ag

    BacterialConcentration/(μg·mL−1)Inhibition zones/(±0.05 cm)
    H2OAgZnFe2O4@PDAZnFe2O4@PDA@Ag
    P. aeruginosa 50 0.6 0.6 0.6 0.85
    100 0.6 0.6 0.6 1.3
    200 0.6 0.7 0.6 1.6
    400 0.6 0.9 0.6 2.1
    S. aureus 50 0.6 0.6 0.6 0.7
    100 0.6 0.6 0.6 0.9
    200 0.6 0.6 0.6 1.4
    400 0.6 0.65 0.6 1.7
    T-Salmonella 50 0.6 0.6 0.6 0.6
    100 0.6 0.6 0.6 0.8
    200 0.6 0.7 0.6 1.0
    400 0.6 0.85 0.6 1.4
    下载: 导出CSV
  • [1] ZENG H P, LI J X, ZHAO W H, et al. The current status and prevention of antibiotic pollution in groundwater in China[J]. International Journal of Environmental Research and Public Health,2022,19(18):11256. doi: 10.3390/ijerph191811256
    [2] HESS J. Rational approaches towards inorganic and organometallic antibacterials[J]. Biological Chemistry,2021,403(4):363-375. doi: 10.1515/hsz-2021-0253
    [3] MO F, ZHOU Q X, HE Y Q. Nano-Ag: Environmental applications and perspectives[J]. Science of the Total Environment,2022,829:154644. doi: 10.1016/j.scitotenv.2022.154644
    [4] ZHANG J, WANG F, YALAMARTY S S K, et al. Nano silver-induced toxicity and associated mechanisms[J]. International Journal of Nanomedicine,2022,2022(17):1851-1864.
    [5] WANG L J, LYU H, LI B J, et al. Synthesis and antibacterial activity of Ag/CeO2 hybrid architectures[J]. Journal of Sol-Gel Science and Technology,2018,88(3):654-659. doi: 10.1007/s10971-018-4855-z
    [6] 郭少波, 梁艳莉, 季晓晖, 等. 纳米核壳型Ag@Fe3O4复合材料的制备、催化及抑菌性能[J]. 复合材料学报, 2021, 38(3):816-823.

    GUO Shaobo, LIANG Yanli, JI Xiaohui, et al. Preparation, catalytic property and antibacterial property of Ag@Fe3O4 core-shell composite nanomaterials[J]. Acta Materiae Compositae Sinica,2021,38(3):816-823(in Chinese).
    [7] FANG Q L, XU K Z, ZHANG J F, et al. Hybrid polydopamine/Ag shell-encapsulated magnetic Fe3O4 nanosphere with high antibacterial activity[J]. Materials,2020,13(17):3872. doi: 10.3390/ma13173872
    [8] LI X Z, LI B Y, LIU Y H, et al. Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics[J]. Colloids and Surfaces B: Biointerfaces,2021,208:112112. doi: 10.1016/j.colsurfb.2021.112112
    [9] 解修超, 兰阿峰, 刘二奴, 等. PDA@Ag纳米复合材料的制备及抑菌性能研究[J]. 贵金属, 2021, 42(1):34-40. doi: 10.3969/j.issn.1004-0676.2021.01.007

    XIE Xiuchao, LAN Afeng, LIU Ernu, et al. Study on preparation and antibacterial property of PDA@Ag composite nanomaterials[J]. Precious Metals,2021,42(1):34-40(in Chinese). doi: 10.3969/j.issn.1004-0676.2021.01.007
    [10] KHINA A G, KRUTYAKOV Y A. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles[J]. Applied Biochemistry and Microbiology,2021,57(6):683-693. doi: 10.1134/S0003683821060053
    [11] HAGHNIAZ R, RABBANI A, VAJHADIN F, et al. Anti-bacterial and wound healing promoting efects of zinc ferrite nanoparticles[J]. Journal of Nanobiotechnology, 2021, 19(38: 00776.
    [12] WANG H Q, LIU M H, LUO X, et al. Preparation of ZnFe2O4/AC composite and its adsorption behaviour for SO2[J]. Environmental Technology,2020,41(18):2412-2423. doi: 10.1080/09593330.2019.1567608
    [13] PU J, ZHANG Z H, ZHANG H J, et al. Efficacy of bactericides against potato common scab caused by Streptomyces in Yunnan, China[J]. American Journal of Potato Research,2022,99(4):326-335. doi: 10.1007/s12230-022-09883-2
    [14] ZHANG N, PENG S S, LIU Z Y, et al. Ag NPs decorated on the magnetic Fe3O4@PDA as efficient catalyst for organic pollutants removal and as effective antimicrobial agent for microbial inhibition[J]. Journal of Alloys and Compounds,2022,928(20):167257.
    [15] THEINER S, LOEHR K, KOELLENSPERGER G, et al. Single-cell analysis by use of ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2020,35(9):1784-1813. doi: 10.1039/D0JA00194E
    [16] RASMUSSEN L, SHI H L, LIU W Y, et al. Quantification of silver nanoparticle interactions with yeast Saccharomyces cerevisiae studied using single-cell ICP-MS[J]. Analytical and Bioanalytical Chemistry,2022,414(9):3077-3086. doi: 10.1007/s00216-022-03937-4
    [17] ANITHA R, RAMESH K V, SUDHEER K K H, et al. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method[J]. Journal of Science: Advanced Materials and Devices,2018,3(4):440-451. doi: 10.1016/j.jsamd.2018.11.001
    [18] WANG X J, MEI L, JIN M C, et al. Composite coating of graphene oxide/TiO2 nanotubes/HHC-36 antibacterial peptide construction and an exploration of its bacteriostat and osteogenesis effects[J]. Journal of Biomedical Nanotechnology,2021,17(4):662-676. doi: 10.1166/jbn.2021.3013
    [19] HNIN Y L, YUKARI A N, AOI M, et al. Soybean peptide inhibits the biofilm of periodontopathic bacteria via bactericidal activity[J]. Archives of Oral Biology,2022,142:105497. doi: 10.1016/j.archoralbio.2022.105497
    [20] CIRNSHI K, COETZEE J, HERRMANN J, et al. Metabolic profiling to determine bactericidal or bacteriostatic effects of new natural products using isothermal microcalorimetry[J]. Journal of Visualized Experiments,2020,164:e61703.
    [21] YANG H Y, CHANG C M, CHEN Y W, et al. Inhibitory effect of propolis extract on the growth of Listeria monocytogenes and the mutagenicity of 4-nitroquinoline-N-oxide[J]. Journal of the Science of Food and Agriculture,2006,86(6):937-943. doi: 10.1002/jsfa.2441
    [22] LUO M B, ZHANG Y J, ZHAO S. Non-enzymatic hydrogen peroxide sensor based on Fe3O4@polydopamine-Ag nanocomposite modified magnetic glassy carbon electrode[J]. Journal of the Electrochemical Society,2021,168(6):067511. doi: 10.1149/1945-7111/ac0604
    [23] TOMAR D, JEEVANANDAM P. Synthesis of ZnFe2O4 nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties[J]. Journal of Magnetism and Magnetic Materials,2022,564(1):170033.
    [24] CAI C, ZHANG Z Y, LIU J, et al. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of orange II in water[J]. Applied Catalysis B: Environmental,2016,182:456-468. doi: 10.1016/j.apcatb.2015.09.056
    [25] CUI K X, YAN B, XIE Y J, et al. Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes[J]. Journal of Hazardous Materials,2018,350:66-75. doi: 10.1016/j.jhazmat.2018.02.011
    [26] ZHAO Z Y, LI P J, CAO X Y, et al. Novel strategies for the preparation of nano-silver pectin sponge composite and its antibacterial properties[J]. Cellulose,2023,30:9425 − 9437. doi: 10.1007/s10570-023-05458-4
    [27] FANG Y, HONG C Q, CHEN F R, et al. Green synthesis of nano silver by tea extract with high antimicrobial activity[J]. Inorganic Chemistry Communications,2021,132:108808. doi: 10.1016/j.inoche.2021.108808
    [28] MELIKE S Y, MUSTAFA C, TANSEI S, et al. Silica coated ZnFe2O4 nanoparticles as cathode catalysts for rechargeable lithium-air batteries[J]. Batteries & Supercaps,2019,2(4):380-386. doi: 10.1002/batt.201800095
    [29] ZOU Y K, YAN R, WANG H B, et al. NIR-responsive polyurethane nanocomposites based on PDA@FA nanoparticles with synergistic antibacterial effect[J]. Macromolecular Chemistry and Physics,2022,223(19):2200141. doi: 10.1002/macp.202200141
    [30] MA Z F, JIANG X Y, JIN Y H, et al. Preparation of nano-silver nanoparticles for conductive ink and the correlations with its conductivity[J]. Applied Nanoscience, 2022, 12(5): 1657-1665.
    [31] KANAGESAN S, HASHIM M, AZIZS A, et al. Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method[J]. Applied Sciences,2016,6(9):184. doi: 10.3390/app6090184
    [32] YARI A, DERKI S, et al. New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA[J]. Sensors and Actuators B: Chemical ,2016,227:456466. doi: 10.1016/j.snb.2015.12.088
    [33] FERREYRA MAILLARD A P V, ESPECHE J C, MATURANA P, et al. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials[J]. Biochimica et Biophysica Acta (BBA)- Biomembranes,2021,1863(6):183597. doi: 10.1016/j.bbamem.2021.183597
    [34] WANG X L, LI Y, HUANG J, et al. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances[J]. Journal of Environmental Radioactivity,2019,197:81-89. doi: 10.1016/j.jenvrad.2018.12.002
    [35] YADAV A K, SIROHI P, SARASWAT S, et al. Inhibitory mechanism on combination of phytic acid with methanolic seed extract of Syzygium cumini and sodium chloride over Bacillus subtilis[J]. Current Microbiology,2018,75(7):849-856. doi: 10.1007/s00284-018-1457-5
    [36] WANG Y, ZHU H L, FENG J G, et al. Recent advances of microcalorimetry for studying cellular metabolic heat[J]. Trends in Analytical Chemistry,2021,143:116353-116362. doi: 10.1016/j.trac.2021.116353
    [37] DONG Y H, ZHU H L, SHEN Y Y, et al. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens[J]. Plos One, 2019, 14(9): e0222322.
    [38] HOVHANNISYAN Z, TIMOTINA M, MANOYAN J, et al. Ribes nigrum L. extract-mediated green synthesis and antibacterial action mechanisms of silver nanoparticles[J]. Antibiotics,2022,11(10):1415. doi: 10.3390/antibiotics11101415
    [39] FRANCO D, CALABRESE G, CONOCI S, et al. Metal-based nanoparticles: Antibacterial mechanisms and biomedical application[J]. Microorganisms,2022,10(9):1778. doi: 10.3390/microorganisms10091778
    [40] YANG R, LIANG B, HAN D, et al. Synthesis and antibacterial activity of magnetic Fe3O4-loaded silver nanocompo-sites[J]. Journal of Alloys and Compounds,2023,973:172849. doi: 10.1016/j.jallcom.2023.172849
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  321
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-20
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回