留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温对基于研发胶黏剂的CFRP板-钢板搭接界面力学性能的影响

李游 李洪仪 马小琬 李传习 李兆超 郑辉 宾佳

李游, 李洪仪, 马小琬, 等. 高温对基于研发胶黏剂的CFRP板-钢板搭接界面力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6596-6609. doi: 10.13801/j.cnki.fhclxb.20230228.002
引用本文: 李游, 李洪仪, 马小琬, 等. 高温对基于研发胶黏剂的CFRP板-钢板搭接界面力学性能的影响[J]. 复合材料学报, 2023, 40(12): 6596-6609. doi: 10.13801/j.cnki.fhclxb.20230228.002
LI You, LI Hongyi, MA Xiaowan, et al. Effect of high temperature on mechanical properties of CFRP plate-steel plate lapping interface based on developed adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6596-6609. doi: 10.13801/j.cnki.fhclxb.20230228.002
Citation: LI You, LI Hongyi, MA Xiaowan, et al. Effect of high temperature on mechanical properties of CFRP plate-steel plate lapping interface based on developed adhesive[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6596-6609. doi: 10.13801/j.cnki.fhclxb.20230228.002

高温对基于研发胶黏剂的CFRP板-钢板搭接界面力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20230228.002
基金项目: 湖南省自然科学基金(2021JJ40173;2021JJ40171);湖南省教育厅优秀青年项目(22B0589)
详细信息
    通讯作者:

    李游,博士,副教授,硕士生导师,研究方向为土木高性能材料与结构 E-mail: liyou_2@163.com

  • 中图分类号: TB332

Effect of high temperature on mechanical properties of CFRP plate-steel plate lapping interface based on developed adhesive

Funds: Natural Science Foundation of Hunan Province (2021JJ40173; 2021JJ40171); Hunan Provincial Education Department Excellent Youth Project (22B0589)
  • 摘要: 针对夏季钢桥面温度高达60℃左右,而温度对碳纤维增强复合材料(CFRP)加固钢结构黏结界面力学性能影响显著的现象。基于研制的高性能胶黏剂GY34,制作了21个胶黏剂拉伸试件、15个CFRP板-钢板双搭接试件,进行了不同温度下的准静态拉伸试验、剪切拉伸试验,揭示了高温(≤90℃)对胶黏剂力学性能及CFRP板-钢板搭接界面力学性能的影响规律,建立了考虑温度影响的搭接界面极限承载力预测模型,得到了黏结-滑移关系模型随温度的变化趋势。研究结果表明:随温度的升高,胶黏剂GY34拉伸强度及弹性模量逐渐降低;断裂伸长率及应变能先增大后减小,在温度接近胶黏剂的玻璃化转变温度Tg,S时达到峰值。随温度升高,基于研制胶黏剂的CFRP-钢搭接试件的极限承载力先增大后减小,破坏模式由CFRP板层离逐渐过渡为钢-胶层界面破坏。小于胶黏剂玻璃化转变温度Tg,S的高温下,荷载-位移曲线具有明显的延性发展阶段。随温度升高搭接试件的应变分布更加均匀,剪应力传递范围及有效黏结长度显著增加。基于研制胶黏剂的搭接试件的黏结-滑移关系的形状在不同温度下均为三线性梯形。高温环境不会改变黏结-滑移关系模型的形状,会导致界面剪应力峰值及刚度逐渐降低,相对滑移与界面断裂能先增加后减小。

     

  • 图  1  固化剂的化学结构式

    Figure  1.  Chemical structure of curing agent

    图  2  胶黏剂拉伸试样的尺寸

    Figure  2.  Dimensions of adhesive tensile test specimen

    R—Radius

    图  3  CFRP-钢双搭接接头的尺寸及应变片布置示意图

    Figure  3.  Dimensions of CFRP-steel double-lap joints and the arrangement of strain gauges

    图  4  胶黏剂动态热力学试验

    Figure  4.  Dynamic thermodynamic test of adhesive

    图  5  胶黏剂试样拉伸试验

    Figure  5.  Tensile test of the adhesive sample

    图  6  CFRP-钢双搭接接头拉伸试验

    Figure  6.  Tensile test of CFRP-steel double lap joint

    图  7  胶黏剂GY34的动态热力学分析曲线

    Figure  7.  Dynamic thermodynamic analysis curve of adhesive GY34

    Tg,S, Tg,L, Tg,T—Glass transition temperature of storage modulus, loss modulus, loss tangent

    图  8  GY34胶黏剂试样在不同温度下的拉伸应力-应变曲线

    Figure  8.  Tensile stress-strain curves of GY34 adhesive samples at different temperatures

    Specimen number GY34-90-25: GY34—Type of adhesive; “90”—Curing temperature of specimen; “0”—Service temperature of specimen

    图  9  胶黏剂GY34在不同温度下的力学性能指标

    Figure  9.  Mechanical properties of adhesive GY34 at different temperatures

    图  10  CFRP-钢界面破坏模式

    Figure  10.  Failure mode of CFRP-steel interface

    图  11  CFRP-钢双搭接试件荷载-位移曲线

    Figure  11.  Load-displacement curves of CFRP-steel double-lap joint

    图  12  温度对CFRP-钢双搭接试件承载力影响

    Figure  12.  Effect of temperature on bearing capacity of CFRP-steel double-lap joints

    Pmax(T)—Ultimate bearing capacity of lap joint at T temperature

    图  13  CFRP表面应变分布

    Figure  13.  Strain distribution on CFRP surface

    图  14  CFRP-钢界面剪应力分布

    Figure  14.  Shear stress distribution at CFRP-steel interface

    图  15  CFRP-钢界面黏结-滑移曲线

    Figure  15.  Bond-slip curve of CFRP-steel interface

    τ—Shear stress; τf—Maximum shear stress; δ1—Maximum elastic slip; δ2—Maximum plastic slip; δf—limit of slip; δ—Slip

    图  16  CFRP-钢界面的黏结-滑移关系简化模型

    Figure  16.  Bond-slip simplified model of CFRP-steel interface

    表  1  研制胶黏剂的配方

    Table  1.   Formulas for developing adhesives

    NameType and amount of curing agent/gEpoxy resin/gNano-SiO2/g
    GY34Amine 105(11.67)+
    D230(23.33)
    1200.6
    下载: 导出CSV

    表  2  碳纤维增强复合材料(CFRP)板及钢板材料参数

    Table  2.   Material properties of carbon fiber reinforced composite (CFRP) plate and steel plate

    Parameter of materialCFRP 2.0 laminateSteel plate
    Thickness/mm 2.0 12
    Width/mm 50 50
    Tensile strength/MPa 2433 514
    Elasticity modulus/GPa 162.8 206
    Elongation at break/% 1.62
    下载: 导出CSV

    表  3  CFRP-钢双搭接接头拉伸试验结果

    Table  3.   Tensile test results of CFRP-steel double lap joints

    Number of specimenLimit displacement/mmUltimate load/kNAverage bond strength/MPaFailure mode
    $ {D}_{\mathrm{m}\mathrm{a}\mathrm{x}} $Average$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}} $Average$ {\stackrel{-}{p}}_{\mathrm{m}\mathrm{a}\mathrm{x}} $Average
    GY34-2.0-90-25-14.42204.2010.21d
    GY34-2.0-90-25-24.694.01208.99205.1010.4510.26d
    GY34-2.0-90-25-34.11202.1110.11d
    GY34-2.0-90-55-17.62231.5111.58d
    GY34-2.0-90-55-27.657.61226.80228.4811.8111.63d
    GY34-2.0-90-55-37.55227.1311.51d
    GY34-2.0-90-70-16.71225.4011.27d/b
    GY34-2.0-90-70-27.467.06232.59229.1511.6311.46d/b
    GY34-2.0-90-70-37.02229.4611.47d/b
    GY34-2.0-90-80-15.20199.48 9.97b/a
    GY34-2.0-90-80-25.245.18202.15199.1410.11 9.96b/a
    GY34-2.0-90-80-35.11195.79 9.79b
    GY34-2.0-90-90-12.86110.27 5.51b
    GY34-2.0-90-90-22.562.70100.31106.37 5.02 5.32b
    GY34-2.0-90-90-32.67108.54 5.43b
    Notes: Specimen number GY34-2.0-90-25-1: GY34 stands for the type of adhesive, “2.0” indicates the thickness of CFRP plate, “90” indicates the curing temperature of specimen, “25” indicates the service temperature of the specimen, “1” indicates the serial number of specimens in each group; Dmax—Limit displacement. It represents variation of the distance between A1 and B1 points when specimens failed, as shown in Fig.3; Pmax—Ultimate load; $ {\stackrel{-}{p}}_{\mathrm{m}\mathrm{a}\mathrm{x}} $—Average bond strength; Failure mode: a—CFRP and adhesive debonding failure; b—Steel and adhesive debonding failure; d—CFRP delamination.
    下载: 导出CSV

    表  4  CFRP-钢界面黏结-滑移简化模型相关参数

    Table  4.   Relevant parameters of bond-slip simplified model of CFRP-steel interface

    Name$ {\tau }_{\mathrm{f}} $/MPa$ {\delta }_{1} $/mm$ {\delta }_{2} $/mm$ {\delta }_{\mathrm{f}} $/mm$ {K}_{\mathrm{E}} $/(MPa·mm−1)$ {K}_{\mathrm{S}} $/(MPa·mm−1)$ {G}_{\mathrm{f}} $/(MPa·mm)
    GY34-2.0-90-25 24.58 0.211 0.401 0.518 116.49 210.09 8.701
    GY34-2.0-90-55 19.06 0.202 0.549 0.641 94.36 207.17 9.416
    GY34-2.0-90-70 16.36 0.178 0.621 0.758 91.91 119.42 9.824
    GY34-2.0-90-80 12.16 0.141 0.507 0.613 86.24 114.72 5.952
    GY34-2.0-90-90 3.63 0.086 0.185 0.230 42.21 80.67 0.597
    Notes: τf—Peak of shear stress; $ {\delta }_{1} $−Maximum elastic slip; $ {\delta }_{2} $−Maximum plastic slip; δf—Limit of slip; KE—Slope of ascending section; Ks—Slope of descent section; Gf—Interface fracture energy.
    下载: 导出CSV
  • [1] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3):121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport,2017,30(3):121-131(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.013
    [2] 李游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111-123.

    LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability analysis of U-rib detail of steel box girder based on monitoring data[J]. Engineering Mechanics, 2020, 37(2): 111-123.
    [3] 谢桂华, 孙悦, 严鹏, 等. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22):22178-22184. doi: 10.11896/cldb.19100008

    XIE Guihua, SUN Yue, YAN Peng, et al. Performance of bonded anchorage for CFRP tendons affected by tempera-ture or moisture[J]. Materials Reports,2020,34(22):22178-22184(in Chinese). doi: 10.11896/cldb.19100008
    [4] LI Y, MA X W, LI H Y, et al. Effect of moisture-heat coupling on mechanical behavior of nano-SiO2 adhesives and CFRP-steel lap joints[J]. Thin-Walled Structures,2023,183:110391. doi: 10.1016/j.tws.2022.110391
    [5] 秦国锋, 糜沛纹, 那景新. 胶粘剂和CFRP吸湿对复合材料粘接接头失效的影响[J]. 交通运输工程学报, 2021, 21(5):149-160.

    QIN Guofeng, MI Peiwen, NA Jingxin. Effect of moisture absorption of adhesive and CFRP on the failure of compo-site material adhesive joints[J]. Journal of Traffic and Transportation Engineering,2021,21(5):149-160(in Chinese).
    [6] 刘思琴, 李传习, 李涛, 等. 基于概率分析的钢箱梁竖向温度梯度模式[J]. 交通科学与工程, 2018, 34(2):45-51. doi: 10.3969/j.issn.1674-599X.2018.02.009

    LIU Siqin, LI Chuanxi, LI Tao, et al. Study on temperature gradient of steel box girder without pavement based on probability analysis[J]. Journal of Transport Science and Engineering,2018,34(2):45-51(in Chinese). doi: 10.3969/j.issn.1674-599X.2018.02.009
    [7] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧黏结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.

    LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese).
    [8] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005

    LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210311.005
    [9] LI S, ZHU T, LU Y Y, et al. Effect of temperature variation on bond characteristics between CFRP and steel plate[J]. International Journal of Polymer Science,2016,2016:1-8.
    [10] DAI J G, GAO W Y, TENG J G. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature[J]. Journal of Composites for Construction,2013,17(2):217-228.
    [11] BISCAIA H C, CHASTRE C, BORBA I S, et al. Experimental evaluation of bonding between CFRP laminates and different structural materials[J]. Journal of Composites for Construction,2016,20(3):04015070.
    [12] XIA S, TENG J G. Behaviour of FRP-to-steel bonded joints[C]//Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005). 2005: 419-426.
    [13] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures,2018,184:1204-1214. doi: 10.1016/j.compstruct.2017.10.033
    [14] FERNANDO D, YU T, TENG J G. Behavior of CFRP lami-nates bonded to a steel substrate using a ductile adhesive[J]. Journal of Composites for Construction,2014,18(2):04013040.
    [15] YANG Y M, BISCAIA H, CHASTRE C, et al. Bond characteristics of CFRP-to-steel joints[J]. Journal of Constructional Steel Research,2017,138:401-419. doi: 10.1016/j.jcsr.2017.08.001
    [16] DEHGHANI E, DANESHJOO F, AGHAKOUCHAK A A, et al. A new bond-slip model for adhesive in CFRP-steel compo-site systems[J]. Engineering Structures,2012,34:447-454. doi: 10.1016/j.engstruct.2011.08.037
    [17] NGUYEN T C, BAI Y, ZHAO X L, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures,2011,93(6):1604-1612. doi: 10.1016/j.compstruct.2011.01.010
    [18] YAO M X, ZHU D J, YAO Y M, et al. Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures[J]. Composite Structures,2016,145:68-79. doi: 10.1016/j.compstruct.2016.02.061
    [19] AL-SHAWAF A, AL-MAHAIDI R, ZHAO X L, et al. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering,2009,10(1):63-74. doi: 10.1080/13287982.2009.11465033
    [20] LIU H B, ZHAO X L, BAI Y, et al. The effect of elevated temperature on the bond between high modulus carbon fibre-reinforced polymer sheet and steel[J]. Australian Journal of Structural Engineering,2014,15(4):355-366.
    [21] KORAYEM A H, CHEN S J, ZHANG Q H, et al. Failure of CFRP-to-steel double strap joint bonded using carbon nanotubes modified epoxy adhesive at moderately elevated temperatures[J]. Composites Part B: Engineering,2016,94:95-101. doi: 10.1016/j.compositesb.2016.03.042
    [22] ZHOU H, URGEL J M, EMBERLEY R, et al. Behaviour of the FRP-to-steel bonded joints under elevated temperature[C]//APFIS2017-6th Asia-Pacific Conference on FRP in Structures. 2017:1-6.
    [23] LI Y, LI C X, HE J, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint[J]. Construction and Building Materials,2020,244:118400. doi: 10.1016/j.conbuildmat.2020.118400
    [24] 李传习, 李游, 贺君, 等. 固化剂对室温胶黏CFRP板/钢板界面性能的影响[J]. 建筑材料学报, 2021, 24(2):339-347. doi: 10.3969/j.issn.1007-9629.2021.02.016

    LI Chuanxi, LI You, HE Jun, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP lami-nate/steel plate cured at room temperature[J]. Journal of Building Materials,2021,24(2):339-347(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.016
    [25] American Society for Testing and Materials. Standard test method for tensile properties for plastics: ASTM D638−10[S]. West Conshohocken: ASTM International, 2010.
    [26] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528−96[S]. West Conshohocken: ASTM, 2008.
    [27] SOUSA J M, CORREIA J R, CABRAL-FONSECAS. Durability of an epoxy adhesive used in civil structural applications[J]. Construction and Building Materials, 2018, 161: 618-633.
    [28] E. ISO. Plastics—Determination of dynamic mechanical properties. Part 1: General principles: 6721-1-2019[S]. Switzerland: ISO, 2019.
    [29] ASTM. Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis: E1640[S]. West Conshohocken: ASTM, 2013.
    [30] NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. Structural Journal,2001,98(3):359-367.
    [31] HASSEIN ABED G. Effects of temperature on the adhesive bonding in steel beams reinforced with CFRP composites[D]. Southampton: University of Southampton, 2012.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  92
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 修回日期:  2023-02-02
  • 录用日期:  2023-03-02
  • 网络出版日期:  2023-03-02
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回